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Figure 1: User is interacting with the mixed reality objects while carrying bags and walking. The tasks on the right are: (a) 
target acquisition (direct selection); (b) target acquisition (ray-cast); (c) text entry. 

Abstract 
This paper investigates the effects of two situational impairments— 
encumbrance (i.e., carrying a heavy object) and walking—on in-
teraction performance in canonical mixed reality tasks. We built 
Bayesian regression models of movement time, pointing offset, error 
rate, and throughput for target acquisition task, and throughput, 
UER, and CER for text entry task to estimate these effects. Our 
results indicate that 1.0 kg encumbrance increases selection move-
ment time by 28%, decreases text entry throughput by 17%, and 
increase UER by 50%, but does not affect pointing offset. Walking 
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led to a 63% increase in ray-cast movement time and a 51% reduction 
in text entry throughput. It also increased selection pointing offset 
by 16%, ray-cast pointing offset by 17%, and error rate by 8.4%. The 
interaction effect on 1.0 kg encumbrance and walking resulted in 
a 112% increase in ray-cast movement time. Our findings enhance 
the understanding of the effects of encumbrance and walking on 
mixed reality interaction, and contribute towards accumulating 
knowledge of situational impairments research in mixed reality. 
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1 Introduction 
The recent broader commercialisation of Mixed Reality (MR) head-
sets (e.g., Meta Quest 3, Apple Vision Pro) has led to this technol-
ogy finally getting out of the confines of research labs and out 
into the real world—with all of its complexity. Early adopters have 
been spotted using these technologies in settings as diverse as the 
gym1 , aeroplanes2 , and even driving3 . Much research on MR in-
teraction techniques has been conducted in “ideal” circumstances, 
removing extraneous sources of variability that might affect results— 
participants sit or stand still, without the burden of carrying objects, 
and the task has their full attention. Though these experiments are 
critical for understanding the upper bounds of performance, they 
must be complemented by studies subject to less-than-ideal con-
ditions. This is particularly significant because prior research has 
shown that contextual and environmental factors—known as situa-
tional impairments [67]—negatively affect interaction with technol-
ogy, including desktop computers [55], smartphones [58, 59, 62] 
and wearable displays [22, 93]. 

To seamlessly integrate MR technologies into everyday tasks, 
it is crucial to understand how situational impairments can af-
fect their performance. In this paper, we investigate the effects of 
two such situational impairments—encumbrance (i.e., carrying a 
weighted object) and walking—on the performance of canonical 
MR tasks. Many users interact with digital devices while on the 
move; thus, if future MR usage resembles current mobile phone use, 
we can expect that people will use them while walking. Similarly, 
whether commuting, shopping, or multitasking, users often find 
themselves using digital devices while holding or carrying bags and 
other objects. Hence, understanding the effects of encumbrance 
and walking is essential for designing MR interfaces that accom-
modate real-world scenarios and enhance usability for individuals 
in diverse, physically constrained situations. 

In this study, we simulated encumbrance using wrist-attached 
bracelets with adjustable weights (three levels: no weight, 0.5 kg, 
and 1.0 kg) and constant walking speed to simulate the walking 
condition similar to previous studies [46]. We used 2D serial point-
ing tasks commonly used in Fitts’ Law experiments (i.e., target 
acquisition task via direct selection and target acquisition task via 
ray-casting) and text entry task (Figure 1). We measured the ef-
fects of encumbrance and walking using movement time [46, 47], 
pointing offset [46, 59, 60, 62], error rate [25], and throughput [39] 
in the target acquisition tasks, and throughput [91], uncorrected 
error rate (UER) [70, 91], and corrected error rate (CER) [70, 91] 

1https://www.essentiallysports.com/bodybuilding-news-bodybuilder-wears-apple-
vision-pro-while-working-out-in-the-gym-and-heres-what-happened/ [Accessed: 
2024-09-11]
2https://www.tomsguide.com/computing/vr-ar/i-flew-8000-miles-wearing-apple-
vision-pro-heres-what-its-really-like [Accessed: 2024-09-11]
3https://gizmodo.com.au/2024/02/here-are-the-wildest-ways-people-have-been-
using-their-apple-vision-pro/ [Accessed: 2024-09-11] 

in the text entry task (we also report words-per-minute in the Ap-
pendix A). Our results indicate that being encumbered with 1.0 
kg increased selection movement time by 28%, decreased selection 
throughput by 22%, decreased text entry throughput by 17%, and 
increase uncorrected error rate by 50%, but did not affect pointing 
offset and error rate. Walking led to a 63% increase in ray-casting 
movement time, a 32% decrease in ray-casting throughput, and a 
51% reduction in text entry throughput. Pointing offset increased 
by 17%, and the error rate increased by 8.4% using the ray-cast in-
teraction method while walking. The corrected error rate increased 
by 68%. The combined effect of 1.0 kg weight and walking increased 
movement time by 112% in the ray-casting target acquisition task 
and decreased text entry throughput by 58%. 

Overall, our study contributes to the growing research area on 
situational impairments in MR by considering the encumbrance 
and walking situations when interacting in an MR context. The 
contributions of this paper are as follows: 

• We build Bayesian regression models to quantify by how 
much encumbrance and walking increase movement time 
and decrease throughput. We show that walking has a greater 
impact than encumbrance and that pointing offset and error 
rate remain unaffected when encumbered, whereas walking 
affects both; 

• We enhance the understanding of the effects of encumbrance 
and walking on MR interaction and contribute towards ac-
cumulating knowledge in situational impairments research 
expanding it to MR; 

• We highlight the importance of considering situational im-
pairments in MR interaction and propose potential strategies 
and directions to mitigate the impacts of situational impair-
ments. 

2 Related Work 
Previous research has shown how different environmental and con-
textual factors influence the way we interact with technology. For 
example, cold environments [21, 58, 88], background noise [62], the 
user’s mobile state [20], stress [59], and physical encumbrance [45, 
46]—can adversely influence mobile interaction, interaction with 
desktop computers [55], and smartwatches [22]. These phenomena 
are known in the literature as Situationally-Induced Impairments 
and Disabilities (SIIDs), or situational impairments for short [67]. 
SIIDs are distinct from health-related impairments and disabilities 
because they are caused by external environmental factors, not 
the individual’s physical or mental health [82]. Once the exter-
nal factors change or are removed, the situational impairments 
also disappear, restoring the individual’s capabilities. As we use 
technology under various contextual factors, situational impair-
ments are bound to affect our interaction with these devices [82]. 
While we already knew the effects of situational impairments on 
mobile devices [61, 74], desktop computers [55], and wearable de-
vices [10, 22, 89], their effects on interaction with MR headsets 
remain under-explored. Hence, in our study, we contribute to the 
growing body of research on situational impairments by quanti-
fying the effect of encumbrance and walking on interaction with 
MR headsets and measuring changes to user performance while 
completing canonical MR tasks. 

https://doi.org/10.1145/3706598.3713492
https://www.essentiallysports.com/bodybuilding-news-bodybuilder-wears-apple-vision-pro-while-working-out-in-the-gym-and-heres-what-happened/
https://www.essentiallysports.com/bodybuilding-news-bodybuilder-wears-apple-vision-pro-while-working-out-in-the-gym-and-heres-what-happened/
https://www.tomsguide.com/computing/vr-ar/i-flew-8000-miles-wearing-apple-vision-pro-heres-what-its-really-like
https://www.tomsguide.com/computing/vr-ar/i-flew-8000-miles-wearing-apple-vision-pro-heres-what-its-really-like
https://gizmodo.com.au/2024/02/here-are-the-wildest-ways-people-have-been-using-their-apple-vision-pro/
https://gizmodo.com.au/2024/02/here-are-the-wildest-ways-people-have-been-using-their-apple-vision-pro/
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2.1 Encumbrance and Walking as Situational 
Impairments 

Encumbrance can occur in various everyday scenarios where indi-
viduals find themselves carrying different items and objects that 
prevent or limit the dexterity and mobility of their hands. Prior 
research mostly studied the effects of encumbrance on mobile in-
teraction [46, 47]. Findings from prior research showed that encum-
brance negatively affects one-handed interaction with smartphones, 
increasing the error rate by 40% [46]. The overall mean movement 
times increase by 18% and 12% for tapping and dragging interaction 
methods, respectively [47]. Though encumbrance can also hinder 
MR interaction and negatively affect user performance, these effects 
are yet to be quantified. 

Further, prior research has mostly focused on the effects of walk-
ing while interacting with smartphones [46]. In a study by Lin et al. 
[33], participants completed standard target selection tasks while 
seated and while walking with obstacles. The study found that 
navigating an obstacle course posed a greater challenge for users 
compared to the seated condition when completing tapping tasks 
on mobile devices [33]. Similarly, Schildbach and Rukzio [64] found 
that walking negatively impacts performance in target selection 
tasks and reading comprehension. The authors further proposed 
that the detrimental effects of walking on target selection could 
be mitigated by increasing target sizes [64]. Hence, it is likely that 
walking also negatively affects user performance when completing 
tasks in MR, but no previous studies have quantified this effect. 

2.2 Measuring Performance in MR 
2.2.1 Target Acquisition. Most MR applications use either of two 
target acquisition techniques [4]: direct selection and ray-casting. 
Direct selection involves choosing objects by directly touching 
them. In contrast, ray-casting allows users to select objects from a 
distance by projecting a visible “ray” (line) from the point of origin 
(e.g., the user’s hand). Direct selection has better throughput [6] 
and avoids issues of precision and parallax associated with angular 
control [52]. However, the selection area is limited and requires 
more pronounced gestures or hand movements from the user [65]. 
In contrast, ray-casting allows one to perform gestures on a larger 
selection area and manipulate objects located at a further distance 
without having to perform pronounced movements as compared to 
direct touch [4]. However, it has also been shown to be susceptible 
to tremor and parallax effects [28, 52]. Therefore, we used two target 
selection tasks: target acquisition via direct selection and target 
acquisition via ray-casting. Fitts’ law is commonly used to model the 
performance during target acquisition tasks [37]. The task layout 
(i.e., Fitts’ ring, see Figure 3a and 3b) is used in Human-Computer 
Interaction (HCI) research to evaluate user performance [59, 62] 
and propose new models [85]. It contains a sequence of targets 
located on the circumference of a ring, and users are required to 
reach the targets one at a time. Common performance measures 
used in pointing tasks include movement time, pointing offset, error 
rate, and throughput, which we adopt in our study. 

Movement Time: Movement time is the duration it takes for 
the user to select a specific target [16, 47, 85]. It quantifies the time 
required to move to a target area as a function of the distance to the 
target and the size of the target [16]. In MR scenarios, this might 

involve the time taken to navigate through menus, select items, or 
execute commands. In our study, we computed movement time as 
the time between target selections. 

Pointing Offset: This corresponds to the distance between the 
end-point location (i.e., where the user selects or reaches) and the 
centre of the target [46, 59, 62]. As such, it is an error measure, 
quantifying how close the user’s final action is to the intended tar-
get’s centre. Situational impairments tend to increase this pointing 
offset [46–48]. 

Error Rate: Different from pointing offset, error rate measures 
the frequency of mistakes made during target selection [59, 62]. This 
includes uncorrected selections, wrong selections, failed attempts 
to engage with virtual elements or misinterpretations of interface 
prompts. A lower error rate suggests that the user can effectively 
interact with the MR system [46, 47]. 

Throughput: Throughput, in bits per second (bits/s), combines 
speed and accuracy in a single measure computed over repeated tri-
als [39]. Speed is represented by the time to complete a task, usually 
known as movement time in Fitts’ law experiments. Throughput 
also considers accuracy, often measured by the deviation from the 
target. 

2.2.2 Text Entry. Text entry is another commonly used task in MR. 
Previous research has shown that the task can be successfully used 
to analyse user performance [59, 62]. The task usually presents a set 
of phrases to be typed verbatim with or without the time limit [43]. 
Every user has their own internal subjective speed-accuracy bias, 
which may change with purpose and context [91]. Thus, separate 
measures of speed and accuracy will vary under different condi-
tions [91]. In light of this, we used a robust performance measure, 
throughput, proposed by Zhang et al. [91], that effectively combines 
the information provided by speed and accuracy. 

Throughput: Throughput combines both speed and accuracy 
to provide a comprehensive measure of interaction performance in 
text entry tasks [12, 13, 79, 91]. It is calculated by considering the 
number of successfully completed tasks within a given time frame 
while accounting for any errors made. Zhang et al. [91] proposed 
an independent throughput metric based on Shannon information 
theory [68] that takes into account both uncorrected error rate 
(UER) and corrected error rate (CER), and character per second 
entry rate [70, 91]. We adapt this new throughput metric in this 
paper to evaluate the text entry task. High throughput reflects a 
balance of quick and accurate interactions, demonstrating that the 
user can maintain effective performance [12, 79, 91]. 

UER and CER: Uncorrected errors are mistakes that remain 
in the transcribed text [70, 91], representing the wrongly typed 
characters that the user does not correct. Corrected errors, on the 
other hand, are those that are made but fixed during the entry 
process (e.g., using backspace) [70, 91], representing wrongly typed 
characters that were fixed during the text entry task. 

To summarise, based on the literature, we use three tasks: tar-
get acquisition via direct selection, target acquisition via ray-cast, 
and text entry (Figure 3) in this work to quantify the effects of 
encumbrance and walking on user performance. Based on previous 
research [44, 59, 62], we operationalise performance with the four 
main measures from target acquisition task and three main measure 
from text entry task to quantify the effects of encumbrance and 
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(a) Participant is encumbered with wrist-attached bracelet and per-
forming target acquisition (direct selection) task. We use wrist-
attached bracelets to represent bags with corresponding weights. 

(b) Participant is walking and performing target acquisition (direct 
selection) task. One researcher in the front represents the pacesetter to 
control the walking speed, and the participant follows the pacesetter’s 
speed. 

Figure 2: Example of the experimental conditions. 

walking: movement time, pointing offset, error rate, target acquisi-
tion throughput, text entry throughput, UER, and CER. The WPM 
was also analysed in the Appendix A. These measures have also 
been used in previous work on the effects of SIIDs [44, 59, 62]. 

3 Method 
In this study, we investigate the effect of encumbrance and walking 
on three common MR interaction tasks: target acquisition via direct 
selection, target acquisition via ray-casting, and text entry. We 
conducted a 3 × 2 within-subjects design: weight (0 kg, 0.5 kg, 
1.0 kg) × movement (standing still, walking at a constant speed). 
We conducted the study in a controlled environment (5m × 6m 
room) and simulated encumbrance and walking conditions in order 
to exclude other factors that might potentially interfere with the 
experimental results. The study received ethics clearance from the 
Human Research Ethics Committee (HREC) of the University of 
Sydney (Application number: 2019/553). 

3.1 Conditions 
3.1.1 Encumbrance. We used wrist-worn bracelets with adjustable 
weights to operationalise encumbrance by attaching them to the 
participant’s dominant hand (Figure 2a). Though encumbrance can 
be manifested in many ways, in this study, we tried to isolate the 
effect of weight. This prioritises the study’s internal validity at 
the expense of other interesting effects, such as the momentum of 
swinging bags. We used the following weights: 0 kg (no bracelet), 
0.5 kg (e.g., a standard bottle of water of 500 ml or a small handbag) 
and 1.0 kg (e.g., a textbook or a mid-sized laptop). 

3.1.2 Walking. We asked our participants to walk along a pre-
defined path in a clockwise direction, as shown in Figure 2b. We 
followed previous research [29, 46], where the walking speed was 

set to the participants’ preferred daily walking speed. A participant 
first walked, setting their desired walking speed, and the researcher 
followed their speed. Once the researcher had grasped the speed, 
the participant followed the researcher to do the actual user study. 
We made this choice to maximize impairing walking effects, as 
users were not able to slow down if the task became difficult [29]. 
We chose not to control the walking speed of the participants (e.g., 
using a treadmill) to let participants find a balance between input 
performance and walking speed [3, 30, 36, 45]. In movement con-
ditions, participants only stopped walking when they finished the 
task. 

3.2 Tasks 
We developed a custom MR application for the Meta Quest 3 in 
Unity 2022.3.12f1 and presented these tasks to participants in a 
counterbalanced order to avoid sequence effects. We describe each 
task in detail below. 

3.2.1 Target Acquisition – Direct Selection. In this task, we asked 
users to select the target by tapping it with the index finger of their 
dominant hand. Following previous work [85, 87, 92], we based the 
task layout on the Fitts’ ring task. 

The task involves 11 targets arranged in a circle, with a starting 
position in the centre. First, participants need to select a start target 
located at the centre of the Fitts’ ring circle. Then, participants 
selected the targets in an alternating sequence as they changed 
color (blue), indicating the next target (Figure 3a). 

The start target and the movement towards the first selection 
(‘0’ in Figure 3a) were excluded from the analysis, as they do not 
involve the same movement amplitude or attack velocity as the 
subsequent selections [37]. In our study, distance and size of targets 
were covariates, not independent variables, allowing us to improve 
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Figure 3: The visual representation of the tasks used in the experiment: (a) target acquisition (direct selection); (b) target 
acquisition (ray-casting); (c) text entry. Blue circle represents the target that needs to be selected. Participants followed the path 
indicated by the red dashed arrows to select the targets sequentially. 

the precision of our performance estimates (e.g., movement time, 
pointing offset) and draw comparisons between levels of encum-
brance and walking. However, we are not interested in the causal 
effect of these variables as they are already well-understood. 

We followed the Meta developer guidelines4 and set the distance 
to the Fitts’ ring to be 49 cm away from the central lens of the 
headset. The width/diameter and distance between the targets also 
followed the guidelines. We chose three target sizes: 4 cm, 6 cm, 
and 8 cm (diameters) with a corresponding distance of 3 cm and 5 
cm between them. This resulted in a total of six combinations (i.e., 
three levels of diameters × two levels of distances) for the Fitts’ task. 
These combinations of width and distance allowed us to vary the 
index of difficulty (ID) for the target acquisition (direct selection) 
task. Participants had to go through all 11 targets, repeating the 
process a total of 6 times for each of the IDs. The corresponding 
IDs and amplitudes are listed in Table 1. 

Table 1: The corresponding ID and amplitude for different 
width/diameter and distance in target acquisition (direct se-
lection) task. 

D 
W ID Amplitude 

4 cm 6 cm 8 cm 4 cm 6 cm 8 cm 

3 cm 0.81 0.58 0.46 28.10◦ 35.64◦ 42.92◦ 

5 cm 1.17 0.87 0.70 35.64◦ 42.92◦ 49.82◦ 

3.2.2 Target Acquisition – Ray-Casting. The target acquisition via 
ray-casting task asked participants to select a target by projecting a 
visible “ray” (line) from a point of origin (user’s hand) as shown in 
Figure 3b. We asked participants to pinch to select the targets using 
the casting ray in an alternating sequence. First, they had to pinch 
to select the start target located at the centre of the Fitts’ ring circle. 
4https://developer.oculus.com/resources/hands-design-ui/ [Accessed: 2024-09-11] 

Once they did so, the targets changed colour (blue) in alternating 
sequences, and participants needed to reach them one by one (in 
Figure 3b). The task also used Fitts’ ring [85, 92]. We set the distance 
to the Fitts’ ring to be 200 cm from the central lens of the headset 
as recommended by the Meta developer guidelines. We further 
followed the guidelines to design targets of three sizes: 8 cm, 12 cm, 
and 16 cm diameters, with a corresponding distance of 6 cm and 
10 cm between targets, resulting in a total of six combinations (i.e., 
three levels of diameters × two levels of distances) for the Fitts’ task. 
Similar to the previous task, we created 6 IDs, and participants had 
to go through all 11 targets. The corresponding IDs and amplitudes 
are listed in Table 2. 

Table 2: The corresponding ID and amplitude for differ-
ent width/diameter and distance in target acquisition (ray-
casting) task. 

D 
W ID Amplitude 

8 cm 12 cm 16 cm 8 cm 12 cm 16 cm 

6 cm 0.81 0.58 0.46 13.98◦ 17.92◦ 21.80◦ 

10 cm 1.17 0.87 0.70 17.92◦ 21.80◦ 25.64◦ 

3.2.3 Measures of Target Acquisition. We followed prior research 
on SIIDs [59, 62] and used movement time, pointing offset, error rate, 
and throughput to measure performance during target acquisition 
tasks. 

Movement time (MT) is recorded as the time (in milliseconds) 
taken by participants to select the target. MT is linearly associated 
with the index of difficulty (ID) [38], as shown in Equation 1, where 
ID depends on the target width (W) and distance (D) [38] as shown 
in Equation 2, 𝑎 and 𝑏 are empirically determined coefficients. The 
smaller the movement time, the better the performance. 

𝑀𝑇 = 𝑎 + 𝑏 · 𝐼 𝐷 (1) 

https://developer.oculus.com/resources/hands-design-ui/
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𝐼 𝐷 = log2 

 
𝐷 
𝑊 

+ 1 

 
(2) 

We used the pointing offset to evaluate the precision of the end-
point location in target acquisition tasks. We measured the pointing 
offset of the end-point location as the distance between the target 
centre (𝑥0, 𝑦0, 𝑧0) and the actual location of user selection ( ˆ 𝑥, ˆ 𝑦, 𝑧) 
as shown in Equation 3. The larger the pointing offset, the worse 
the performance. 

Offset = 
√︃ 
( ̂𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 + ( ̂𝑧 − 𝑧0)2 (3) 

We measured the error rate [90] as the percentage of the wrongly 
selected targets to the total number of targets (Equation 4). The 
smaller the error rate, the better the performance. 

𝐸𝑡 𝑎𝑟𝑔𝑒𝑡 = 
Incorrect Selections 

Total Targets 
· 100% (4) 

We further evaluated throughput (TP) for target acquisition tasks, 
which combines speed and accuracy in a single measure computed 
over repeated trials [39]. The throughput is shown in Equation 5, 
where 𝐼 𝐷𝑒 represents the effective index of difficulty. 𝐼 𝐷𝑒 is calcu-
lated using Equation 6, where 𝑊𝑒 is the effective target width [83]. 
The measure 𝑊𝑒 is calculated from the standard deviation of the 
selection coordinates collected across a series of trials, which is 
𝑊𝑒 = 4.133 × 𝑆𝐷 . The smaller the throughput, the worse the per-
formance. 

𝑇 𝑃 = 
𝐼 𝐷𝑒 

𝑀𝑇 
(5) 

𝐼 𝐷𝑒 = log2 

 
𝐷 
𝑊𝑒 

+ 1 

 
(6) 

3.2.4 Text Entry. In the text entry task, the application presented 
a sequence of phrases, one at a time, and we asked participants 
to type them verbatim in the text box. We followed previous stud-
ies [14, 72], in which 5 sentences were randomly selected from 
MacKenzie’s phrase set [40] for participants to type under each 
of the conditions. The texts were of the same difficulty, ensuring 
fairness across conditions and removing any potential confounding 
effect of the presented text. We allowed participants to submit their 
sentences with wrong characters as restricting responses to fully 
correct sentences would lead to a loss of data on uncorrected error 
rate [70, 91]. Since we measure the throughput, both UER and CER 
were accounted for evaluation. 

3.2.5 Measures of Text Entry. We used throughput to measure par-
ticipants’ performance in the text entry task. Text entry throughput 
is a robust performance measure for text entry that conveys the in-
formation found in speed and accuracy measures while also remain-
ing stable across various speed-accuracy biases [91]. Characters 
per second (CPS) is the speed metric. The calculation is shown in 
Equation 7, where 𝐼 (𝑋 , 𝑌 ) is the transmitted information that can 
be calculated as 𝐼 (𝑋 , 𝑌 ) = 𝐻 (𝑋 ) − 𝐻𝑌 (𝑋 ), with 𝐻 (𝑋 ) representing 
the source information, and 𝐻𝑌 (𝑋 ) representing the conditional 
entropy. We report the WPM in Appendix A as supporting data. 

Throughput = 𝐼 (𝑋 , 𝑌 ) · 𝐶𝑃𝑆 (7) 

We also used uncorrected error rate (UER) and corrected error 
rate (CER) to measure the performance in the text entry task. Un-
corrected errors refer to mistyped characters that the user fails to 
correct during the text entry process (Equation 8). In contrast, cor-
rected errors denote mistyped characters that the user successfully 
rectifies during the task (Equation 9). 

𝑈 𝐸𝑅 = 
Uncorrected and Not Fixed Character 

Total Character 
· 100% (8) 

𝐶 𝐸𝑅 = 
Uncorrected but Fixed Character 

Total Character + Uncorrected but Fixed Character 
· 100% (9) 

3.3 Participants 
We recruited 30 participants (16 men, 14 women) in our study (2 
left-handed) using our university’s notice board and snowball re-
cruitment. Participants’ average age was 24 (min = 19, max = 29, SD 
= 3). Prior to analysing the data of these participants, we followed a 
common practice to mirror the data for left-handed participants [62]. 
This is to ensure the axis and unit of the data were the same across 
all participants. 13 out of 30 participants were not familiar with the 
headset. The average height of our participants is 170 cm (min = 
158 cm, max = 192 cm, SD = 9 cm); the average weight is 65 kg (min 
= 45 kg, max = 89 kg, SD = 14 kg). Our participants had exercised 
an average of 8 days (min = 0 day, max = 26 days, SD = 7 days) over 
the past month. Our sample covers a wide range of participants, 
from non-exercisers to daily exercisers. Each participant was given 
a unique anonymous ID (Participant ID) in our study. Our sample 
size is along the sample size standards for HCI research [8]. 

3.4 Procedure 
Our study followed a 3 × 2 within-subjects design: weight (0 kg, 
0.5 kg, 1.0 kg) × movement (standing still, walking at a constant 
speed). The order of conditions was randomly presented to the 
participant. This way, we minimised the impact of any potential 
fatigue or learning effects. Upon their arrival at our lab, we provided 
an overview of the study’s purpose. Once participants understood 
the study and agreed to take part, they signed the consent form. We 
then asked participants to complete a background questionnaire. 
The background questionnaire collected participants’ demographic 
information on gender, age, dominant hand, height, weight, fre-
quency of exercise, and experience with MR. We collected this 
information to ensure our participants represented a broad range, 
and we used a within-subject design to reduce variability due to 
individual differences and systematic biases. 

We then trained our participants using a tutorial with the three 
tasks until they were comfortable and familiar with the headset 
and each task to minimise learning effects. The tutorial tasks were 
shorter versions of the actual tasks: the target acquisition (direct 
selection) and target acquisition (ray-casting) tasks included only 
one trial of the Fitts’ ring, and the text entry task involved a single 
sentence not included in the set of phrases used in the study. 

After the training, we started the video recording and ended it 
after the interview finished. Participants completed the three tasks 
following the researcher’s instructions. Participants were given 
time to rest between each condition to avoid fatigue and dizziness; 
this time was between 1-2 minutes and was determined by the 
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Figure 4: The experimental procedure. 

participant’s perception to ensure they felt rested enough. At the 
end of the experiment, we conducted a semi-structured interview 
with each participant to gain more insights into their experience 
during the study. The total duration of the study was 50-60 minutes 
per participant. The complete process is listed in Figure 4. 

3.5 Data Analysis 
We summarise our theoretical claims as a direct acyclical graph in 
Figure 5. We argue that encumbrance and walking affect movement 
time, pointing offset, error rate, target acquisition throughput, text 
entry throughput, UER, and CER at different levels. We further 
evaluate the interaction effect of encumbrance and walking. We 
also add covariates (i.e., 𝐼 𝐷 , 𝐼 𝐷𝑒 , and Width) known to affect the 
movement time, pointing offset, error rate, and throughput to in-
crease the precision of our estimates. The order of the condition 
(Order) and the exercise frequency (Exercise) are kept in the models 
as fixed effects to control for fatigue and learning effects across indi-
viduals. Since we used a within-subject design with a random order 
of conditions, these do not confound our results [1, 19]. However, in 
scenarios with cumulative effects (e.g., fatigue), modelling Order as 
a fixed effect better estimates the trend without assuming random 
variation [53, 69]. We modelled participant ID as random effects 
reflecting the hierarchical structure of the data. The variables in 
the model are listed below: 

• Weight: A numeric variable indicating the weight attached 
to the wrist in kg. 

• Motion: A binary variable indicating whether the partici-
pant is walking or not. 

• ID: A numeric variable indicating the index of difficulty. 
This covariate was used to analyse movement time and error 
rate [16, 46, 47]. 

• IDe: A numeric variable indicating the effective index of dif-
ficulty. This covariate was used to analyse target acquisition 
throughput [39]. 

• Width: A numeric variable indicating the width/diameter 
of the target. This covariate was used to analyse pointing 
offset [38]. 

• Order: A numeric variable indicating the order of the condi-
tion, which was treated as a fixed effect. 

• Exercise: A numeric variable indicating the number of days 
to describe participants’ exercising frequency within one 
month, which was treated as a fixed effect. 

• Participant ID: A random effect used to model individual 
differences. 

We employed Bayesian statistical methods in our analysis due 
to their enhanced flexibility, capacity to quantify uncertainty, and 
ability to facilitate future work to build upon it [5, 42]. This method 
is widely used in HCI research [5, 66]. We fit our models using the 
brms package [7], which implements Bayesian multilevel models in 
R using the Stan probabilistic programming language [9]. We used 
regularising priors designed to be sceptical of implausibly large 
effect sizes. We assessed the convergence and stability of the Markov 
Chain Monte Carlo sampling with R-hat, which should be lower 
than 1.01 [76] and the Effective Sample Size (ESS), which should 
be greater than 1000 [7]. All of our estimates fit these criteria. We 
report the posterior means of parameter estimates, the error of these 
estimates, and the upper and lower bounds of the 95% compatibility 
interval (i.e., credible interval, CI) [7]. This compatibility interval 
indicates the range of values where there is a 95% probability that 
the true value falls within. For full transparency, all our analysis 
scripts and results can be found in the supplementary material. 

We report the hypothesis test results using Bayes Factor, which 
compares the likelihood of the observed data under the proposed 
model over the null condition. We interpret these values following 
the approach by Russo [57] and Wagenmakers et al. [78], consider-
ing values above 1 as supporting a given hypothesis, values under 3 
offering anecdotal evidence; under 10, substantial evidence; under 
30, strong evidence; under 100, very strong evidence; and above 100, 
extreme evidence. We note that p-values are not used in Bayesian 
statistics, and no claims about “statistical significance” should be 
derived from our results. 

Additionally, we report the hypothesis test results using pos-
terior probability as well, which reflects the updated belief about 
a hypothesis of the positive effect after seeing the data, consider-
ing both the prior and the likelihood [31]. We interpret the values 
following the approach by Wadinambiarachchi et al. [77], consid-
ering values higher than 90% as accepting the hypothesis; 60% -
90% as indicating some evidence, but it may not be strong enough; 
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Figure 5: Theorised causal directed acyclic graph. The thickness of the arrow represents the effect of the factor. The thicker the 
arrow, the stronger its effect. 

40% - 60% as suggesting the hypothesis is unlikely; 10% - 40% as 
indicating some evidence about negative effect, but it may not be 
strong enough; and below 10% as indicating strong evidence about 
negative effect. 

We use Python 3.12.0 and R 4.3.1 to clean and analyse the 
data. We used Pandas 2.1.2, Numpy 1.26.1 (Python), and brms 
2.21.0, ggplot2 3.4.4 (R) libraries for our data analysis. The 
qualitative analysis presented in Section 4.1.5 and Section 4.2.3 
reflects on the participants’ comments and behaviour during the 
study and their answers in the semi-structured interviews. We 
semantically analysed the video recordings from each participant 
and summarised their interview answers. 

4 Results 
4.1 Target Acquisition 
We collected a total of 26,028 records in the target acquisition task. 
We filtered out unintentional selections by removing the targets 
that took less than 100 milliseconds to select from the dataset as 
accidental activations [46], leaving us with a total number of 24,886 
records (11 targets/task/person × 6 conditions (3 weight × 2 motion) 
× 6 IDs × 2 tasks (direct selection/ray-casting) × 30 participants + 
wrong selections). 

4.1.1 Movement Time. To analyse movement time, we filtered our 
data and kept only the data with correctly selected targets; uncor-
rected selections were used to analyse the error rate. The movement 
time follows a shifted Log-normal distribution [49, 54]. We used 
Bayesian regression to model the effect of encumbrance and walk-
ing on movement time in a log scale. 

Table 3 reports the posterior means of parameter estimates, the 
errors of these estimates, and the upper and lower bounds of the 
95% compatibility/credible interval (CI). The model suggests that 
both the effect of weight and walking have a 100% probability of 
leading to higher movement time for both target acquisition tasks. 
The Bayes Factor of 7.9 ×10308 for direct selection and 1.4 ×1038 for 
ray-casting suggest extreme support for weight leading to higher 
movement time, and the Bayes Factor of 4.9 × 10272 for direct 
selection and ∞ for ray-casting suggest extreme support for walking 
leading to higher movement time. The coefficients for weight (0.41, 

SD = 0.05, CI = [0.31, 0.51]) and motion (0.17, SD = 0.05, CI = [0.08, 
0.27]) are positive for direct selection, which indicates an increase 
in movement time. In addition, the coefficients for weight (0.27, 
SD = 0.07, CI = [0.14, 0.41]) and motion (0.09, SD = 0.06, CI = [-
0.03, 0.22]) are positive for ray-casting as well, which indicates 
an increase in movement time. We found no interaction effect of 
weight and motion on direct selection (mean = -0.07, error = 0.07, 
CI = [-0.21, 0.07]), where the probability is 19%. However, there is a 
substantial interaction effect of weight and motion on ray-casting 
(0.22, SD=0.10, CI = [0.02, 0.41]), where the probability is 93%. 

Figure 6 illustrates the posterior means of parameter estimates 
and the corresponding bounds of the 95% CI for weight and mo-
tion. We can see that all factors increase the movement time, with 
ray-cast under walking condition having the highest effect on move-
ment time. In summary, our model suggests that, on average, heavy 
weight and walking add towards increase in movement time. The 
effects of weight and walking in movement time on direct selection 
is less than ray-casting. The effect of weight in movement time 
is more than walking under direct selection, while the effect of 
walking in movement time is more than weight under ray-casting. 
Additionally, as the weight increases, its effect on movement time 
becomes more profound. 

4.1.2 Pointing Offset. Similar to the movement time, we filtered 
our data and kept only the data with correctly selected targets; 
uncorrected selections were used to analyse the error rate. The 
pointing offset follows a shifted Log-normal distribution [49, 54]. 
We used Bayesian regression to model the effect of encumbrance 
and walking on pointing offset in log scale. 

Table 4 reports the user’s pointing offset for both direct selection 
and ray-casting tasks. It shows that the coefficients for weight (-
0.25, SD = 0.07, CI = [-0.39, -0.11]) under direct selection indicate a 
decrease in the pointing offset, and the coefficients for weight (0.00, 
SD = 0.07, CI = [-0.14, 0.13]) under selection using ray-cast indicate 
a slight increase in the pointing offset. The effect of weight has a 0% 
probability of leading to larger pointing offset in direct selection and 
a 49% probability of leading to larger pointing offset in ray-cast. The 
Bayes Factor of 1.353 indicates no support for weight, leading to a 
smaller pointing offset in direct selection. Besides, the Bayes Factor 
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Table 3: Summary of the movement time model: MT ~ 1 + (1|participant) + order + exercise + ID · (weight · movement). We 
provide the posterior means of parameter estimates (Estimate), posterior error of these estimates (Error), and the upper and 
lower bound of the 95% CI. All parameter estimates converged with an ESS well above 1000 and an R-hat of 1.00. The complete 
set of parameter estimates is in Table 10 in the Appendix B. 

Parameter Direct Selection Ray-Casting 

Estimate (Error) 95% CI Estimate (Error) 95% CI 

Fixed Effects (Independent Variables) 
Intercept 6.06 (0.09) [5.87, 6.25] 6.74 (0.08) [6.58, 6.89] 
Weight 0.41 (0.05) [0.31, 0.51] 0.27 (0.07) [0.14, 0.41] 
Walking 0.17 (0.05) [0.08, 0.27] 0.09 (0.06) [-0.03, 0.22] 
Weight:Walking -0.07 (0.07) [-0.21, 0.07] 0.22 (0.10) [0.02, 0.41] 
ID:Weight -0.11 (0.06) [-0.24, 0.02] -0.00 (0.09) [-0.17, 0.17] 
ID:Walking 0.07 (0.06) [-0.05, 0.19] 0.55 (0.08) [0.39, 0.71] 
ID:Weight:Walking 0.14 (0.09) [-0.04, 0.31] -0.24 (0.12) [-0.48, 0.00] 
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(b) Effect of Motion on Movement Time 
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Figure 6: Model posterior predictions for movement time across different conditions of weight (0 kg, 0.5 kg, and 1.0 kg) and 
motion (standing still and walking) under two different tasks (direct selection and ray-casting). Scores correspond to the 
movement time in milliseconds (higher is worse). The upper bound and lower bound indicate the true value of the estimation 
lies within the 95% CI. The dot and center line are the predicted median movement time. 

Table 4: Summary of the pointing offset model: offset ~ 1 + (1|participant) + order + exercise + width · (weight · movement). We 
provide the posterior means of parameter estimates (Estimate), posterior error of these estimates (Error), and the upper and 
lower bound of the 95% CI. All parameter estimates converged with an ESS well above 1000 and an R-hat of 1.00. The complete 
set of parameter estimates is in Table 11 in the Appendix B. 

Parameter Direct Selection Ray-Casting 

Estimate (Error) 95% CI Estimate (Error) 95% CI 

Fixed Effects (Independent Variables) 
Intercept 2.43 (0.06) [2.31, 2.54] 2.69 (0.05) [2.60, 2.79] 
Weight -0.25 (0.07) [-0.39, -0.11] -0.00 (0.07) [-0.14, 0.13] 
Walking 0.04 (0.06) [-0.06, 0.17] 0.12 (0.06) [-0.01, 0.24] 
Weight:Walking 0.11 (0.10) [-0.09, 0.31] -0.04 (0.10) [-0.23, 0.16] 
Width:Weight 0.00 (0.00) [-0.00, 0.00] 0.00 (0.00) [-0.00, 0.00] 
Width:Walking 0.00 (0.00) [-0.00, 0.00] 0.00 (0.00) [-0.00, 0.00] 
Width:Weight:Walking -0.00 (0.00) [-0.00, 0.00] 0.00 (0.00) [-0.00, 0.00] 
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(b) Effect of Motion on Pointing Offset 
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(c) Interaction Effect of Weight and Motion on 
Pointing Offset 

Figure 7: Model posterior predictions for pointing offset across different tasks (direct selection and ray-casting) of weight (0 
kg, 0.5 kg, and 1.0 kg) and motion (standing still and walking). Scores correspond to the pointing offset (higher is worse). The 
upper bound and lower bound indicate the true value of the estimation lies within the 95% CI. The dot and the center line are 
the predicted median pointing offset. 

of 0 indicates no support for weight leading to larger pointing offset 
in ray-cast. In contrast, the coefficients for motion (0.04, SD = 0.06, 
CI = [-0.06, 0.17]) under direct selection and the coefficients for 
motion (0.12, SD = 0.06, CI = [-0.01, 0.24]) under selection via ray-
cast are positive, indicating an increase in the pointing offset. The 
results also show that the effect of walking has a 74% probability 
of leading to larger pointing offset in direct selection and a 96% 
probability of leading to larger pointing offset in ray-cast. The Bayes 
Factor of 1.6 × 1033 in direct selection and 2.6 × 1038 in ray-cast 
suggest extreme support for walking leading to larger offset size. 
Additionally, there is a 86% probability of having an interaction 
effect of weight and motion in direct selection. However, there is 
only a 36% probability of having an interaction effect of weight and 
motion in ray-casting. 

Figure 7 illustrates the posterior means of parameter estimates 
and the corresponding bounds of the 95% CI for weight and motion. 
We can see that the effect of walking substantially increase the 
pointing offset of the user’s end-point location. In summary, our 
model suggests that, on average, walking increased offset size in 
both direct selection and ray-cast tasks. 

4.1.3 Error Rate. We use Bayesian regression with Poisson distri-
bution to model the effect of encumbrance and walking on the error 
rate. 

Table 5 reports the error rate of the posterior means of parameter 
estimates, the errors of these estimates, and the upper and lower 
bounds of the 95% CI. The model suggests that the effect of weight 
has only a 77% probability of leading to a higher error rate in direct 
selection and only a 23% probability of leading to a higher error 
rate in ray-cast, which indicates a moderate effect on the error rate. 
The model also suggests the effect of walking has a 95% probability 
of leading to a higher error rate in direct selection and a 100% 
probability of leading to a higher error rate in ray-casting, which 
indicates a strong effect of increasing the error rate. The Bayes 
Factor of 503 in the direct selection and 79 in ray-casting suggest 
weight has a substantial effect on the error rate. The Bayes Factor 
of 1302 in direct selection and 9.7 × 1053 in ray-casting suggest 
walking has an extreme effect on the error rate. It shows that the 

coefficients for motion (mean = 0.17, error = 0.05, CI = [0.08, 0.27]) 
under direct selection and motion (0.09, SD = 0.06, CI = [-0.03, 0.22]) 
under ray-cast are positive, which indicates a slight increase in error 
rate. In contrast, the coefficients for the weight (0.41, SD = 0.05, CI 
= [0.31, 0.51]) under direct selection and weight (0.27, SD = 0.07, CI 
= [0.14, 0.41]) under ray-cast are positive, which indicates a slight 
increase in error rate. There is no interaction effect of weight and 
motion under direct selection (-0.07, SD = 0.07, CI = [-0.21, 0.07]), 
with the probability of 15%. However, there is a positive interaction 
effect of weight and motion under ray-cast (0.22, SD = 0.10, CI = 
[0.02, 0.41]), with the probability of 75%. 

Figure 8 illustrates the posterior means of parameter estimates 
and the corresponding bounds of the 95% CI for weight and motion. 
Fitts’ law assumes a 4% error rate according to its information 
theory basis [37, 71]. Thus, the error for direct selection under both 
standing still and walking conditions remain acceptable, and the 
error for ray-cast under standing still is acceptable. However, the 
error rate using ray-cast under walking condition is larger than 
4%, which indicates a strong impact on error rate. In summary, our 
model suggests that, on average, walking and selection via ray-
casting result in an increase in error rate, and the error rate under 
all other conditions remain below acceptable thresholds. 

4.1.4 Throughput. To analyse throughput, we kept all data from 
target acquisition tasks as the metric can evaluate both speed and 
accuracy. The throughput follows a shifted Log-normal distribu-
tion [49, 54]. We used Bayesian regression to model the effect of 
encumbrance and walking on throughput in a log scale. 

Table 6 reports the posterior means of parameter estimates, the 
errors of these estimates, and the upper and lower bounds of the 
95% CI. The model suggests the effect of weight has 0% probability 
of leading to higher throughput in both direct selection and ray-
casting, and the effect of motion has 0% probability of leading to 
higher throughput in direct selection and 0% probability of leading 
to higher throughput in ray-casting, which all indicate a strong 
negative effect on the throughput. The Bayes Factor of 4.6 × 10308 

on direct selection and 3.5 × 1038 on ray-casting suggest extreme 
support for weight leading to lower throughput. Besides, the Bayes 
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Table 5: Summary of the error rate model: error ~ 1 + (1|participant) + order + exercise + ID · (weight · movement). We provide 
the posterior means of parameter estimates (Estimate), posterior error of these estimates (Error), and the upper and lower 
bound of the 95% CI. All parameter estimates converged with an ESS well above 1000 and an R-hat of 1.00. The complete set of 
parameter estimates is in Table 12 in the Appendix B. 

Parameter Direct Selection Ray-Casting 

Estimate (Error) 95% CI Estimate (Error) 95% CI 

Fixed Effects (Independent Variables) 
Intercept -5.90 (0.94) [-7.77, -4.09] -4.01 (0.59) [-5.15, -2.87] 
Weight 1.02 (1.36) [-1.64, 3.70] -0.65 (0.81) [-2.23, 0.91] 
Walking 1.93 (1.22) [-0.45, 4.39] 2.05 (0.59) [0.92, 3.20] 
Weight:Walking -1.87 (1.80) [-5.39, 1.67] 0.58 (0.86) [-1.09, 2.30] 
ID:Weight -1.57 (1.77) [-5.12, 1.94] 1.21 (1.02) [-0.74, 3.20] 
ID:Walking -2.69 (1.62) [-5.93, 0.44] -0.11 (0.76) [-1.55, 1.41] 
ID:Weight:Walking 3.73 (2.39) [-1.06, 8.43] -0.82 (1.08) [-2.97, 1.23] 
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Figure 8: Model posterior predictions for error rate across different conditions of weight (0 kg, 0.5 kg, and 1.0 kg), motion 
(standing still and walking), and task (selection and ray-cast). Scores correspond to the error rate in percentage (higher is worse). 
The upper bound and lower bound indicate the true value of the estimation lies within the 95% CI. The dot and the center line 
are the predicted median error rate. 

Table 6: Summary of the target acquisition throughput model: TP ~ 1 + (1|participant) + order + exercise + IDe · (weight · 
movement). We provide the posterior means of parameter estimates (Estimate), the posterior error of these estimates (Error), 
and the upper and lower bound of the 95% CI. All parameter estimates converged with an ESS well above 1000 and an R-hat of 
1.00. The complete set of parameter estimates is in Table 13 in the Appendix B. 

Parameter Direct Selection Ray-Casting 

Estimate (Error) 95% CI Estimate (Error) 95% CI 

Fixed Effects (Independent Variables) 
Intercept -0.71 (0.07) [-0.85, -0.57] -1.30 (0.08) [-1.45, -1.14] 
Weight -0.33 (0.04) [-0.40, -0.26] -0.31 (0.06) [-0.43, -0.19] 
Walking -0.26 (0.03) [-0.32, -0.19] -0.21 (0.06) [-0.32, -0.10] 
Weight:Walking 0.08 (0.05) [-0.03, 0.18] -0.16 (0.09) [-0.33, 0.01] 
𝐼 𝐷𝑒 :Weight 0.10 (0.04) [0.02, 0.17] 0.09 (0.06) [-0.03, 0.20] 
𝐼 𝐷𝑒 :Walking 0.11 (0.03) [0.05, 0.18] -0.13 (0.05) [-0.24, -0.03] 
𝐼 𝐷𝑒 :Weight:Walking -0.15 (0.05) [-0.26, -0.05] 0.06 (0.08) [-0.10, 0.23] 
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Figure 9: Model posterior predictions for throughput across different tasks (direct selection and ray-casting) of weight (0 kg, 0.5 
kg, and 1.0 kg) and motion (standing still and walking). Scores correspond to the throughput in bits/s (lower is worse). The 
upper bound and lower bound indicate the true value of the estimation lies within the 95% CI. The dot and the centre line are 
the predicted median throughput. 

Factor of 1.0×10103 on direct selection and 2.1×10101 on ray-casting 
suggest extreme support for walking leading to lower throughput 
as well. The coefficients for weight (mean = -0.33, error = 0.04, CI = 
[-0.40, -0.26]) and motion (mean = -0.26, error = 0.03, CI = [-0.32, 
-0.19]) are negative for direct selection, which indicates a decrease 
in throughput. In addition, the coefficients for weight (mean = -0.31, 
error = 0.06, CI = [-0.43, -0.19]) and motion (mean = -0.21, error = 
0.06, CI = [-0.32, -0.10]) are negative for ray-casting as well, which 
indicates a decrease in throughput. The interaction effect of weight 
and motion on direct selection (mean = 0.08, error = 0.05, CI = [-0.03, 
0.18]) and on ray-casting (mean = -0.16, error = 0.09, CI = [-0.33, 
0.01]) are not substantial. 

Figure 9 illustrates the posterior means of parameter estimates 
and the corresponding bounds of the 95% CI for weight and mo-
tion. We can see that all factors decrease the throughput, with 
direct selection under weight condition having the highest effect 
on throughput. In summary, our model suggests that, on average, 
heavy weight and walking add towards decrease in throughput. 

4.1.5 General Findings. 25 out of 30 participants felt that being 
encumbered affected their performance, mostly linking their perfor-
mance decline to being fatigued from wearing weights, especially 
when completing target acquisition via direct selection, e.g., “I felt 
tired when wearing weight so I tended to move slower” (P19). The 
video recordings also showed that the participants tended to bend 
their elbows and placed their wrists closer to their upper body and 
kept their hands lower to reduce the effect of weight. Furthermore, 
participants also reported that the bigger weight was more tiring 
than the smaller weight; however, two participants mentioned that 
the weight did not affect their error rate, e.g., “I do not feel that the 
weight will affect the error” (P27). 

Besides, majority of participants (N = 24) [17, 56] claimed that 
walking affected their performance in MR tasks, mostly linking 
the effect to difficulty of aiming at the target, especially when 
completing target acquisition via ray-casting, e.g., “It is hard to 
press the small button [while walking]” (P8), and “It is hard to aim 
the button using ray-casting method [while walking]” (P32). Some 
participants (N = 9) [17, 56] noted that it was particularly hard to 

complete the target acquisition via ray-casting while walking as 
it requires more effort as compared to while being encumbered, 
e.g., “The ray-cast task needed very accurate selection while walking.” 
(P9). The video recordings also showed that participants tended to 
briefly stop or moved slowly while walking to aim at the target. 

4.2 Text Entry 
Each participant completed 30 sentences during the study. We col-
lected a total of 900 sentences during the experiment from all par-
ticipants. While cleaning the data, we found that 15 sentences were 
left empty because participants unintentionally pressed the enter 
button and skipped to the next sentence. We removed these com-
pletely empty sentences (1.6% of the dataset) from our data as they 
do not quantify performance. We evaluate the user performance in 
the text entry task using throughput. 

4.2.1 Throughput. We employ Bayesian regression with a Gauss-
ian distribution to model the effects of encumbrance and walking 
on the throughput of typing a sentence. This model represents the 
number of words or characters typed per minute while accounting 
for the error rate on a normal scale. 

Table 7 reports the throughput of the posterior means of param-
eter estimates, the errors of these estimates, and the upper and 
lower bounds of the 95% CI in text entry task. The coefficients for 
motion (mean = -2.52, error = 0.11, CI = [-2.74, -2.31]) and weight 
(mean = -0.82, error = 0.12, CI = [-1.05, -0.58]) are negative, which 
indicates a decrease in throughput. The model suggests that both 
the effect of weight and walking have a 0% probability of leading to 
higher throughput, which indicates a strong negative effect on the 
throughput. The Bayes Factor of 4.8695 × 109 suggests extreme sup-
port for weight leading to lower throughput, and the Bayes Factor 
of 3.2249 × 10103 suggests extreme support for walking leading to 
lower throughput. There is a 100% probability of having an interac-
tion effect of weight and motion. Figure 8 illustrates the posterior 
means of parameter estimates and the corresponding bounds of the 
95% CI. We can see that both weight and walking have a strong 
impact on throughput, especially walking has a bigger effect as 
compared to weight. 
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Figure 10: Model posterior predictions for throughput in text entry task across different conditions of weight (0 kg, 0.5 kg, and 
1.0 kg), and motion (standing still and walking). Scores correspond to the throughput in bits per second (lower is worse). The 
upper bound and lower bound indicate the true value of the estimation lies within the 95% CI. The dot and the centre line are 
the predicted median throughput. 

Table 7: Summary of the throughput model: TP ~ 1 + (1|par-
ticipant) + order + exercise + weight · movement. We provide 
the posterior means of parameter estimates (Estimate), pos-
terior error of these estimates (Error), and the upper and 
lower bound of their 95% CI. All parameter estimates con-
verged with an ESS well above 1000 and an R-hat of 1.00. The 
complete set of parameter estimates is in Table 14 in the 
Appendix B. 

Parameter Estimate (Error) 95% CI 

Fixed Effects (Independent Variables) 
Intercept 4.44 (0.24) [3.99, 4.92] 
Weight -0.82 (0.12) [-1.05, -0.58] 
Walking -2.52 (0.11) [-2.74, -2.31] 
Weight:Walking 0.52 (0.17) [0.19, 0.86] 

4.2.2 UER and CER. We further evaluate uncorrected error rate 
(UER) and corrected error rate (CER) for text entry task. The UER 
and CER follow a zero-inflated Beta distribution. We used Bayesian 
regression to model the effect of encumbrance and walking on UER 
and CER. 

Table 8 reports the posterior means of parameter estimates, the 
errors of these estimates, and the upper and lower bounds of the 
95% compatibility/credible interval. The model suggests the effect 
of weight has a 97% probability of leading to higher UER, and a 24% 
probability of leading to higher CER, which indicates a decrease on 
CER. The Bayes Factor of 0.1119 and 0.00476 suggests anecdotal 
evidence for weight leading to higher UER and CER. The coefficients 
for weight (mean = 0.55, error = 0.28, CI = [-0.01, 0.11]) indicates 
slightly increase on UER, and the coefficients for weight (mean = 
-0.07, error = 0.10, CI = [-0.26, 0.13]) indicates slightly decrease on 
CER. 

When focusing on the motion, the effect of motion has 100% 
probability of leading to higher UER, which indicates a strong 
effect on UER, and a 100% probability of leading to higher CER, 
which indicates a strong effect on CER. The Bayes Factor of 1.32309 

suggests anecdotal evidence of leading to higher UER, and the 
Bayes Factor of 1.0157 × 1022 suggests extreme support for walking 
leading to higher CER. The coefficients for walking (mean = 0.63, 
error = 0.22, CI = [0.19, 1.08]) indicates a substantial increase on 
UER, and the coefficients for walking (mean = 0.47, error = 0.08, CI 
= [0.32, 0.63]) indicates a strong increase on CER as well. 

Figure 11 illustrates the posterior means of parameter estimates 
and the corresponding bounds of the 95% CI for weight and motion. 
We can see that weight does not have much effect on CER, but 
increased UER. Walking increases both UER and CER. 

4.2.3 General Findings. During the semi-structured interviews, 
few participants (N = 3) mentioned that the weight affected their 
performance when completing the text entry task, e.g., “The weights 
are definitely heavy for typing” (P30). Besides, participants (N = 7) 
felt that walking affected their typing performance, e.g., “It is easy to 
type wrong while walking” (P12), and “I would not focus on accuracy 
while walking and typing. It is better to complete the task first” (P29). 

Additionally, the semi-structured interviews revealed partici-
pants’ concerns regarding their safety when wearing headsets in 
their daily lives. Several participants (N=10) claimed that wearing 
the headset while typing was not safe. For example one participant 
mentioned: “It is not safe as when typing, I need to focus on the 
sentences, which I would forget to check the surroundings” (P8). 

Furthermore, majority of the participants (N = 22) [17, 56] showed 
concerns about the headset being widely adopted in the society. 
Specifically, these participants mentioned that they would be hesi-
tant to wear the headset daily unless it became a common practice 
within their social environment. Some participants claimed that: 
“I need to consider how others think about the headset” (P28), “If 
most people are wearing it, I will wear it” (P20, P25). These findings 
highlight a broader concern about social acceptance and potential 
safety issues associated with wearing such technology in everyday 
settings that need to be taken into account. 

5 Discussion 
Our findings suggest that both encumbrance and walking substan-
tially affect user performance during target acquisition via direct 
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Table 8: Summary of the uncorrected error rate and corrected error rate model: UER/CER ~ 1 + (1|participant) + order + exercise 
+ weight · movement. We provide the posterior means of parameter estimates (Estimate), posterior error of these estimates 
(Error), and the upper and lower bound of their 95% CI. All parameter estimates converged with an ESS well above 1000 and an 
R-hat of 1.00. The complete set of parameter estimates is in Table 15 in the Appendix B. 

Parameter Uncorrected Error Rate Corrected Error Rate 

Estimate (Error) 95% CI Estimate (Error) 95% CI 

Fixed Effects (Independent Variables) 
Intercept -1.38 (0.27) [-1.93, -0.85] -2.45 (0.10) [-2.64, -2.27] 
Weight 0.55 (0.28) [-0.01, 1.11] -0.07 (0.10) [-0.26, 0.13] 
Walking 0.63 (0.22) [0.19, 1.08] 0.47 (0.08) [0.32, 0.63] 
Weight:Walking -0.57 (0.34) [-1.23, 0.09] 0.20 (0.12) [-0.04, 0.44] 
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Figure 11: Model posterior predictions for uncorrected error rate and corrected error rate across different weight (0 kg, 0.5 kg, 
and 1.0 kg) and motion (standing still and walking). Scores correspond to the uncorrected error rate and corrected error rate in 
percentage (lower is worse). The upper bound and lower bound indicate the true value of the estimation lies within the 95% CI. 
The dot and the center line are the predicted median accuracy rate. 

selection, target acquisition via ray-casting, and text entry tasks, 
with walking having a greater impact than encumbrance (1.0 kg 
weight) at this level. In this section, we discuss the detailed effects 
of encumbrance and walking, and elaborate on potential reasons 
behind the observed phenomenon. 

5.1 Effects of Encumbrance and Walking on MR 
Interaction 

5.1.1 Encumbrance. Through our study, we identified a strong 
proportional relationship between weight and movement time. Es-
pecially, our results confirm that the negative effect of weight on 
movement time increases as the weight increases. When using di-
rect selection, 1.0 kg weight (movement time = 832 ms) resulted 
in a 28% increase on movement time as compared to no-weight 
condition (movement time = 649 ms). When using ray-cast selec-
tion, 1.0 kg weight (movement time = 1861 ms) resulted in a 27% 
increase on movement time as compared to no weight condition 
(movement time = 1462 ms). Our findings are consistent with previ-
ous research that found that participants took significantly longer 
time to reach the target while being encumbered during mobile 
interaction [46, 47]. Ng et al. [47] reported that the overall mean 
movement times increased by 18% when 1.6 kg weight was held 

when completing tapping tasks on smartphones. Ng et al. [46] re-
ported that the overall mean movement times increased by 9% when 
1.6 kg weight was held during tapping tasks on mobile devices in a 
one-handed mode. 

Furthermore, our results demonstrate that in the target acqui-
sition task, the weight did not show a substantial effect on the 
pointing offset. The offset has decreased by 9% with 1.0 kg weight 
(offset = 19.15 mm) under direct selection as compared to the no-
weight condition (offset = 21.13 mm), and the offset increased by 4% 
with 1.0 kg weight (offset = 38.02 mm) as compared to no-weight 
condition (offset = 36.70 mm). Since the width of the ray-casting 
task is set to be twice that of the direct selection task, the predicted 
offset for ray-casting is correspondingly larger than that for di-
rect selection. However, from the Bayes Factor we can see that the 
changes in offset size for both tasks were not so substantial. This 
indicates the weight did not affect the offset size. The actual effects 
are all within 2 mm (roughly between 2-5% of the target size) and 
are almost negligible for MR interaction in real-world scenarios. 
Thus, the effect is minimal enough not to impact performance. How-
ever, prior research showed that encumbrance with 1.6 kg weight 
caused a 40% increase in the offset size during smartphone tapping 
tasks [46]. This misalignment with prior research might be due to 
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the difference in the nature of mobile interaction. Mobile interac-
tion, unlike MR interaction, requires precise fine motor movements 
as users operate with significantly smaller targets. Encumbrance 
significantly affects precision in fine motor movements, leading to 
a more profound effect in touch accuracy [46, 47]. 

Similarly, our findings did not reveal a strong effect of encum-
brance on the error rate. The error rate has decreased 0.1% when 
encumbered with 1.0 kg weight (error rate = 0.4%) when performing 
direct selection tasks as compared to no-weight condition (error 
rate = 0.5%). During the selection via ray-casting, the error rate 
increased 0.4% when being encumbered with 1.0 kg weight (error 
rate = 1.6%) as compared to the no-weight condition (error rate 
= 1.2%). The observed error rates remain acceptable, as Fitts’ law 
assumes a 4% error rate according to its information theory ba-
sis [37, 71]. These findings are different from the ones reported in 
prior research on mobile interaction, which showed the mean error 
rate increased by 12% when 1.6 kg bag was held during tapping 
tasks in two-handed interaction mode [47], and the mean error rate 
increased by 10% when holding 1.6 kg bag and using one-handed 
interaction mode [46]. This discrepancy with prior research could 
again be due to the nature of MR interaction as it offers a larger 
interaction area with greater tolerance for errors, unlike mobile 
interaction. 

Through our study, we identified a strong relationship between 
weight and target acquisition throughput. When using direct se-
lection, 1.0 kg weight (throughput = 1.19 bits/s) resulted in a 22% 
decrease as compared to no-weight condition (throughput = 1.52 
bits/s). When using ray-cast selection, 1.0 kg weight (throughput = 
0.75 bits/s) resulted in a 20% decrease on throughput as compared to 
the no-weight condition (throughput = 0.94 bits/s). Our findings are 
inline with previous research on smartphone interaction. Ng et al. 
[47] reported that the target acquisition throughput increased by 
23% when completing tapping tasks on smartphones while 1.6 kg 
weight was held. This demonstrates that encumbrance significantly 
impairs throughput in target acquisition tasks both in mobile and 
MR interaction. 

Furthermore, in the text entry task, the model (Figure 10) indi-
cates a negative correlation between weight and throughput. The 
typing throughput shows a 17% decrease when being encumbered 
with 1.0 kg weight (throughput = 4.03 bits/s) as compared to the 
no-weight condition (throughput = 4.84 bits/s). Our findings are 
similar to previous research on mobile interaction [50], where par-
ticipants found it is harder to type while being encumbered with 
different objects. 

Finally, we identified that weight does not affect CER but increase 
UER. Our results indicate that 1.0 kg weight (UER = 12.30%) resulted 
in a 50% increase in UER as compared to no-weight condition (UER = 
8.20%). However, the CER of 1.0 kg weight (CER = 4.90%) is roughly 
the same as compared to no-weight condition (CER = 5.26%). These 
findings suggest that, when encumbered, participants chose not to 
correct errors and left them wrong. 

Our quantitative results were reinforced by qualitative insights 
gathered from semi-structured interviews. Most of the partici-
pants (N = 25) [17, 56] reported that being encumbered negatively 

impacted their performance, often attributing this decline to fa-
tigue caused by wearing weights. Additionally, during the semi-
structured interviews, few participants (N = 3) specifically men-
tioned that the weights hindered their performance during the text 
entry task. 

5.1.2 Walking. Our results indicate a strong proportional relation-
ship between walking and movement time. When using direct selec-
tion, walking (movement time = 887 ms) resulted in a 21% increase 
on movement time as compared to standing still (movement time = 
733 ms). When using ray-cast selection, walking (movement time = 
2686 ms) resulted in a 63% increase in movement time as compared 
to standing still (movement time = 1648 ms). This is consistent 
with prior research, which reported an increase in movement time 
when completing selection tasks on smartphones (by 31%) while 
walking [64]. 

Furthermore, our results demonstrate that walking substantially 
affected the pointing offset. Walking increased 16% of the offset in 
direct selection (offset = 23.29 mm) and by 17% in ray-cast selection 
(offset = 43.76 mm) as compared to standing still (offset = 20.12 mm 
and offset = 37.35 mm respectively). Ng et al. [46] also reported 
that using two-handed index finger input posture decreased offset 
by an average of 16% while carrying bags and walking. Our results 
support findings by Ng et al. [46] and demonstrate that walking 
impairs performance in target selection tasks in MR. 

Similarly, our results demonstrate that walking using ray-cast 
also substantially affected the error rate. The error rate increased 
0.2% in the direct selection (error rate = 0.7%) and 8.4% in the ray-cast 
selection (error rate = 9.8%) when walking. Our findings are in line 
with previous research showing that the error rate has increased 
by 7% when walking around an obstacle path as compared to being 
seated [64]. Given that Fitts’ law accepts 4% error rate, the value 
for error rate in direct selection while walking remains acceptable. 
This observation is similar to the effect of encumbrance on target 
acquisition. However, the value for error rate in selection via ray-
casting was higher than the acceptable threshold, implying that 
the effect of walking was more severe on selection via ray-casting, 
than the effect of encumbrance on both target acquisition tasks. 

Our results also indicate a strong relationship between walking 
and target acquisition throughput. When using direct selection, 
walking (throughput = 1.12 bits/s) resulted in a 16% decrease on 
throughput as compared to standing still (throughput = 1.34 bits/s). 
When using ray-cast selection, walking (throughput = 0.57 bits/s) 
resulted in a 32% increase in throughput as compared to standing 
still (throughput = 0.84 bits/s). 

Furthermore, in the text entry task, the Bayesian model (Fig-
ure 10) indicates a strong negative correlation between walking 
and throughput. The throughput has decreased by 2.26 bits/s (51%) 
compared to standing still. Our findings are in line with prior re-
search that demonstrated that text entry performance was better 
while being seated as compared to walking [18]. Our findings are 
consistent with previous research on mobile interaction [43], where 
the input speed was significantly lower, and the error rate was sig-
nificantly higher while walking. 

Finally, we identified that walking resulted in increase in both 
UER and CER. Our results indicate that walking (UER = 12.88%, 
CER = 8.53%) resulted in a 28% and 68% increase in UER and CER 
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separately as compared to standing still (UER = 10.10%, CER = 5.09%). 
These findings suggest that the total number of errors during the 
walking condition was too high, prompting participants to correct 
some of them to ensure the sentence remained fluent. This is also 
inline with our qualitative findings from Section 4.2.3, where P29 
said “I would not focus on accuracy while walking and typing. It is 
better to complete the task first” (P29), which indicates that the error 
rate was higher than standing still condition. 

Moreover, our quantitative results were supported by qualitative 
data gathered from semi-structured interviews. The majority of 
participants (N = 24) reported that walking adversely impacted 
their performance in MR tasks, primarily attributing this to the 
difficulty of aiming at the target. Some participants (N = 9) specifi-
cally mentioned that completing target acquisition via ray-casting 
was particularly challenging while walking, as it demands greater 
precision compared to being encumbered. This finding aligns with 
prior research, which shows that participants tend to reduce their 
walking speed to better sample the environment and allocate cogni-
tive resources to other tasks [51]. Furthermore, as P29 mentioned in 
Section 4.2.3, participants prioritize task completion over accuracy 
while walking and typing, resulting in a higher error rate, and thus 
lower text entry throughput. 

5.1.3 Encumbrance vs. Walking. Our results demonstrate that in tar-
get acquisition and text entry tasks, the effects of walking were more 
profound as compared to the effects of encumbrance. For example, 
the movement time in target acquisition via ray-casting while car-
rying 1.0 kg weight has increased by 27%; while under walking, it 
has increased by 63%. Majority of our participants (N=22) [17, 56] 
also stated that the effect of walking was more substantial com-
pared to the effect of encumbrance when completing MR tasks. 
Several participants (N=7) mentioned that walking affected their 
performance due to the scene constantly moving, and they were 
required to focus harder on the task and split their attention to 
monitor the surrounding environment. Furthermore, our results 
showed the effect of the weight on participants’ performance var-
ied across individuals. This discrepancy can be attributed to the 
participants’ strength levels, which can be influenced by factors 
like regular physical activity [41, 73]. Therefore, these variations 
suggest that the effects of encumbrance in MR interaction can be 
perceived differently depending on one’s physical strength and 
conditioning. 

Some participants (N = 9) noted that it was particularly hard to 
complete the target acquisition via ray-casting while walking as it 
requires more accuracy as compared to while being encumbered. 
This observation might have been caused by the nature of the task, 
as walking not only causes a divide in attention but also induces 
hand tremors, hence not allowing participants to select targets 
accurately while walking. 

Furthermore, selecting targets using ray-cast requires smaller 
wrist amplitude for the gesture, thus participants would not feel as 
tired while encumbered. This is because of the nature of the ray-
casting task. It requires movements of an arm within a small area, 
unlike direct selection, which requires moving the arm at a greater 
amplitude. Ray-casting allows the elbow to stay closer to the body, 
thus reducing the weight felt by the shoulder muscles [23, 32]. 

5.1.4 Interaction Effect of Encumbrance and Walking. Our results 
demonstrate that in the target acquisition task, the interaction effect 
of encumbrance and walking does not have a substantial impact 
on pointing offset, error rate, and throughput. However, there is a 
substantial interaction effect of weight and motion on movement 
time. When using ray-casting, encumbered with 1.0 kg weight and 
walking (movement time = 3097 ms) resulted in a 112% increase in 
movement time compared to no-weight and standing still condition 
(movement time = 1462 ms). Furthermore, the interaction effect 
of weight and motion also affects the throughput of the text entry 
task. Encumbered with 1.0 kg weight and walking (throughput = 
2.02 bits/s) resulted in a 58% decrease in throughput compared to 
no-weight and standing still conditions (throughput = 4.84 bits/s). 
These are more profound than the single effect of either being en-
cumbered with a 1.0 kg weight or walking, which suggests that 
the combined influence of weight and motion amplifies the chal-
lenges, making it more difficult for users to perform tasks in MR 
environments. 

5.2 Contrasting the Effects of Encumbrance and 
Walking 

Our findings demonstrate that being encumbered strongly affected 
movement time during target acquisition tasks. The increase in 
movement time while being encumbered could be due to the fa-
tigue participants experienced in the mid-air interaction. Hincapié-
Ramos et al. [23] and Li et al. [32] demonstrated that the level of 
fatigue experienced by the shoulder muscles depends on how much 
weight can be handled while maintaining a required contraction. 
As a result, participants would make shorter and slower move-
ments after sensing localised fatigue [11]. Hence, encumbrance 
could potentially have a more pronounced effect in MR interaction, 
as it mostly requires mid-air gestures. Particularly, given that the 
weights we used in this research are smaller than the ones used 
by Ng et al. [46], our findings still demonstrate a substantial dete-
riorating effect of encumbrance on MR interaction. This further 
highlights how encumbrance poses even greater challenges on MR 
interaction, as compared to mobile interaction. Therefore, it is im-
portant to study the effects of different situational impairments on 
MR interaction, especially if people want to use MR as seamlessly 
as they use mobile devices in their daily lives. 

Prior research has shown a negative effect of encumbrance on 
pointing offset [46, 47] and error rates [64] in mobile interaction. 
In contrast, our findings did not fully align with these results. Our 
findings revealed a substantial effect of walking on the pointing 
offset and error rate on target acquisition via ray-casting. Whereas 
the values for offset in target acquisition for both via direct selection 
and ray-casting remain under an acceptable threshold while being 
encumbered. This discrepancy could be caused by the difference in 
the nature of mobile and MR interactions. Precisely, in MR devices, 
we have a larger space for interaction, whereas on mobile devices, 
the interaction space is limited to the screen size [2]. Additionally, 
the weights we used were lower than the previous studies (1.6 
kg) [46, 47], which could also be a reason that lower weight does 
not show a substantial effect on offset and error rate. Hence, the 
effects of encumbrance and walking on the error rates and offset are 
more profound during mobile interaction than on MR interaction. 
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The increased fatigue experienced by the participants during di-
rect selection and text entry compared to ray-casting may be attrib-
uted to the greater movement amplitude required. Hincapié-Ramos 
et al. [23] demonstrated that the location of clicks can substantially 
impact fatigue, i.e., clicking near the centre of the 2D plane while 
keeping the arm in a bent position causes the least amount of fa-
tigue compared to other positions. Our findings are consistent with 
the literature; for example, right-handed users need to extend their 
arms to reach targets in the upper left corner during direct selection. 
These larger hand movements may lead to increased fatigue, par-
ticularly when additional weights are involved. In contrast, when 
using ray-casting, users can maintain a bent elbow and keep their 
wrists closer to their upper body following the law of the lever and, 
hence, reducing fatigue. 

Our results show that walking had a greater impact on the point-
ing offset and error rate in the target acquisition task when com-
pared to encumbrance. This is because walking, as a dynamic activ-
ity, requires continuous balance and coordination, which can divide 
attention between navigating in the environment and completing 
the tasks [80], whereas encumbrance does not require this divide in 
attention. Furthermore, the movement of the limbs that occurs due 
to walking causes the hands and arms to be less steady [81], which 
results in increased pointing offset and higher error rates. This sug-
gests that a one-size-fits-all strategy is inadequate for addressing 
the challenges posed by encumbrance and walking. Instead, it’s 
essential to tackle these issues individually, recognising that each 
presents unique demands. For example, greater focus should be 
placed on how attention resources are allocated during walking, 
as this factor plays a critical role in MR interaction and affects 
interaction performance. 

5.3 Addressing the Effects of Encumbrance and 
Walking on MR Interaction 

As our results demonstrate, the effects of encumbrance and walking 
are different on mobile interaction. Similar to previous studies, 
we avoid a one-size-fits-all approach, as different technology and 
design features may be more suitable for different environments 
and tasks [86]. 

For instance, eye tracking technology presents a viable alter-
native to gesture-based interactions. Recognized for its quick and 
efficient input capabilities, eye tracking has shown potential in 
enhancing object selection tasks [75, 86]. The primary advantage 
of eye-tracking is that it allows hands-free interaction and facili-
tates fast and precise selection of virtual objects [86]. Hence, it can 
potentially reduce the physical strain on hands and allow users to 
stay engaged with the MR environment while being encumbered. 
However, eye-tracking should not be used when the user is walking 
as it will reduce the user’s focus. Therefore, user awareness of their 
physical surroundings, balance, coordination, and visual attention 
can be compromised, leading to disorientation, accidents or injuries 
caused by the obstacles in their real environment. 

Furthermore, voice input technology enables users to issue com-
mands verbally, eliminating the need for physical gestures. Its pri-
mary strength lies in facilitating complex interactions without re-
quiring physical effort [15]. This method can be applied to a variety 
of tasks, such as navigating menus, selecting objects, controlling 

the environment, and triggering specific actions. Voice input is par-
ticularly advantageous in scenarios where precision and speed are 
crucial, as it allows users to perform actions quickly and accurately 
without moving their hands or arms. Similarly, for the situations 
when the user is walking, voice input can offer a hands-free and 
eyes-free alternatives that allow users to issue commands and input 
text verbally, which takes physical safety into consideration. 

Moreover, integrating sensors that monitor the user’s physical 
context in real-time enables MR systems to detect situational im-
pairments (e.g., encumbrance or walking), and dynamically adapt 
the interaction method accordingly [34]. Instead of explicitly iden-
tifying specific activities, the system could also infer situational 
impairments based on the specific user performance, automatically 
adjusting the input modality to suit the user’s current context. For 
instance, if the system senses a drop in throughput, it could suggest 
using hands-free interaction methods such as eye tracking or voice 
commands to enhance user experience. 

In real-world scenarios, it is crucial to design MR systems not 
only for user comfort but also to ensure that interactions are per-
ceived as natural [27]. Feedback from 6 out of 30 participants indi-
cated feeling awkward when wearing the headset. This reflects a 
concern for social norms and acceptance when using the headset 
outdoors. Interaction methods should be developed with an empha-
sis on aligning with social expectations and natural behaviour [24]. 

Additionally, the user’s physical safety should always be the 
top priority. In the semi-structured interview, P8 mentioned: “It 
is not safe as when typing, I need to focus on the sentences, which 
I would forget to check the surroundings” (P8). This is in line with 
previous research, where individuals using cell phones were sig-
nificantly less likely to notice different obstacles in their vicinity 
compared to those not using phones [26]. Furthermore, individuals 
texting while walking exhibited altered postural control [63] and 
may overlook obstacles or hazards [26], which increased the risk of 
accidents. This is called “inattentional blindness”—a psychological 
phenomenon where individuals fail to notice unexpected events 
in their environment due to diverted attention [35]. The major-
ity of research on situational impairments is conducted in highly 
controlled surroundings [59, 82], creating ideal conditions for the 
participants. However, with the current MR headsets, these ideal 
conditions might mask their performance flaws. For instance, while 
Microsoft HoloLens generally performs well under ideal conditions, 
it may have negative effects in actual military settings, potentially 
compromising soldiers’ safety5 . This highlights the need for situa-
tional impairments research on MR interaction to be taken out of 
ideal conditions to be able to understand and prevent safety risks 
that these headsets might impose on users when used outside the 
lab environment. 

5.4 Limitations and Future Work 
We acknowledge a number of limitations in our study. First, the 
study settings were strictly controlled. We simulated encumbrance 
by attaching a weight on the wrist and removed other factors related 
to the ergonomics of carrying more common items in our daily lives. 
Furthermore, we controlled the weight attached to participants’ 

5https://www.techspot.com/news/105242-army-wants-microsoft-substantially-
lower-price-80000-hololens.html [Accessed: 2024-11-06] 
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wrists. However, it is possible that in the real-world context, partic-
ipants can experience carrying heavier items. We also controlled 
for a walking path to simulate walking. However, in a real-world 
scenario, people usually walk on more challenging terrains and 
experience the presence of other passers-by on their way. Neverthe-
less, we argue it was necessary to control for these variables in order 
to eliminate any potential confounding effects and avoid causing 
harm to our participants [59]. Since we know the prominent effects 
of encumbrance and walking, we hypothesise that these effects will 
be more pronounced in real-world scenarios (e.g., carry bags in 
hand, walking in a busy street). Future work could explore the im-
pact of other types of encumbrance, including wearing day-to-day 
handbags, a heavy backpack, and different weights attached to dif-
ferent body locations. This could provide further insights into how 
load distribution affects movement dynamics and overall physical 
performance. Furthermore, future work could utilise standardised 
instruments to collect data on participants’ physical conditions (e.g., 
Physical Component Summary) to provide quantitative insights 
into participants’ fitness levels. 

Second, we limited the tasks presented in this study to target ac-
quisition and text entry. However, we acknowledge that in real-life 
scenarios, users may perform more complex tasks in MR. Nev-
ertheless, we controlled for the task to understand the effects of 
encumbrance and walking on basic MR tasks. Now that we know 
the substantial effects of encumbrance and walking on these basic 
tasks, we predict that these effects will be more pronounced when 
completing more complex tasks in MR. Third, we restricted our par-
ticipants to using only the index finger of their dominant hand to 
complete the tasks. We argue that controlling their interaction was 
necessary to draw a fair comparison among different conditions. 
Fourth, although we tried to position the targets with different 
diameters and distances to make sure the task covered wide visual 
areas, the angles between the targets and users’ view were still 
within the field of view of the headsets. Future work could explore 
targets located far from the user’s centre viewing angle and outside 
of their view [84, 85]. 

Finally, the use of the Meta Quest 3, equipped with a video see-
through display, may influence user experience compared to optical 
see-through headsets (e.g., Microsoft HoloLens). Unlike optical 
see-through systems, the video-based display can introduce visual 
distortions of real-world objects and may exhibit delays in the world 
camera feed. However, our choice of Meta Quest 3 was based on 
the fact that the Meta Quest 3 headset is one of the most popular 
headsets used among the general population6 . Furthermore, the 
high resolution of Meta Quest 3 offers a clearer interface during MR 
interaction. Finally, compared to other advanced video see-through 
headsets, the Meta Quest 3 is a cost-effective option. 

6 Conclusion 
In this study, we investigate the effects of encumbrance and walk-
ing on MR interaction performance in target acquisition (direct 
selection and ray-casting) and text entry tasks. We found that 
being encumbered and walking slowed participants in complet-
ing the tasks. Encumbered with 1.0 kg weight, increased selection 
movement time by 28%, decreased selection throughput by 22%, 

6https://www.sciencefocus.com/reviews/meta-quest-3-review [Accessed: 2024-12-01] 

decreased text entry throughput by 17%, and increase uncorrected 
error rate by 50%, but does not affect pointing offset and error rate. 
Walking led to a 63% increase in ray-casting movement time, a 32% 
decrease in ray-casting throughput, and a 51% reduction in text 
entry throughput. We also found that both the pointing offset and 
error rate were higher in walking conditions as compared to being 
encumbered. The pointing offset increased by 16% using the direct 
selection method while walking, the pointing offset increased by 
17%, and the error rate increased by 8.4% using the ray-cast interac-
tion method while walking. The corrected error rate increased by 
68%. The interaction effect of 1.0 kg weight and walking resulted in 
a 112% increase in ray-casting movement time and a 58% decrease in 
text entry throughput. We highlight the importance of considering 
situational impairments in MR interaction and propose potential 
strategies and directions to mitigate the impacts of situational im-
pairments. Our findings enhance the understanding of the effects 
of encumbrance and walking on MR interaction and contribute 
towards accumulating knowledge in SIIDs research, expanding it 
to MR. 
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A Text Entry - WPM Results 
We further analyses the text entry task using words per minute 
(WPM). The WPM follows a shifted Log-normal distribution. We 
used Bayesian regression to model the effect of encumbrance and 
walking on WPM. The results are inline with our main findings, 
where 1.0 kg weight resulted in a 16% decrease in WPM, and walking 
resulted in a 45% decrease in WPM. The interaction effect of 1.0 kg 
weight and walking resulted in a 54% decrease in WPM. 

Table 9 reports the posterior means of parameter estimates, the 
errors of these estimates, and the upper and lower bounds of the 
95% compatibility/credible interval. The model suggests the effect of 
weight has 0% probability of leading to higher WPM, and the effect 
of motion has 0% probability of leading to higher WPM, which all 
indicate a strong negative effect on WPM. The Bayes Factor of 0 
suggests anecdotal evidence for weight leading to lower WPM, and 
the Bayes Factor of 3.2249 × 10103 suggests extreme support for 
walking leading to lower WPM. The coefficients for weight (mean 
= -0.18, error = 0.04, CI = [-0.26, -0.09]) and motion (mean = -0.61, 
error = 0.04, CI = [-0.68, -0.53]) are both negative, which indicates 
weight and motion decreases the WPM. There is no interaction 
effect of weight and motion (mean = 0.01, error = 0.06, CI = [-0.11, 
0.13]). 

Figure 12 illustrates the posterior means of parameter estimates 
and the corresponding bounds of the 95% CI for weight and motion. 
We can see that all factors decrease the WPM, with walking having 
substantial effect on WPM than weight. In summary, our model 
suggests that, on average, weight and walking add towards decrease 
in WPM, and walking affects more than weight. 

Through our study, we identified a strong relationship between 
walking and WPM. Our results indicate that 1.0 kg weight (WPM 
= 12.81) resulted in a 16% decrease in WPM as compared to no-
weight condition (WPM = 15.29). Walking (WPM = 7.68) resulted 

https://doi.org/10.1145/3290607.3299029
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Table 9: Summary of the WPM model: WPM ~ 1 + (1|participant) + order + exercise + weight · movement. We provide the 
posterior means of parameter estimates (Estimate), posterior error of these estimates (Error), and the upper and lower bound 
of their 95% CI. All parameter estimates converged with an ESS well above 1000 and an R-hat of 1.00. 

Parameter Estimate (Error) 95% CI 

Regression Coefficients 
Intercept 2.48 (0.07) [2.35, 2.61] 
Weight -0.18 (0.04) [-0.26, -0.09] 
Walking -0.61 (0.04) [-0.68, -0.53] 
Weight:Walking 0.01 (0.06) [-0.11, 0.13] 

Fixed Effects 
Order 0.07 (0.01) [0.06, 0.08] 
Exercise 0.00 (0.01) [-0.01, 0.01] 

Random Effects 
Participant: sd(Intercept) 0.20 (0.03) [0.15, 0.27] 

Further Distributional Parameters 
sigma 0.36 (0.01) [0.34, 0.38] 
ndt 0.01 (0.01) [0.00, 0.03] 
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Figure 12: Model posterior predictions for words per minute across different weight (0 kg, 0.5 kg, and 1.0 kg) and motion 
(standing still and walking). Scores correspond to the words per minute (lower is worse). The upper bound and lower bound 
indicate the true value of the estimation lies within the 95% CI. The dot and the center line are the predicted median accuracy 
rate. 

in a 45% decrease as compared to standing still (WPM = 14.00). 
Additionally, walking while encumbered with 1.0 kg weight (WPM 
= 7.06) resulted in a 54% decrease as compared to standing still with 
no-weight (WPM = 15.29). This is inline with our throughput results, 

where the interaction effect of weight and motion substantially 
affects the performance. 

B Tables of the Complete Set of Parameter 
Estimates 
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Table 10: Summary of the movement time model: MT ~ 1 + (1|participant) + order + exercise + ID · (weight · movement). We 
provide the posterior means of parameter estimates (Estimate), posterior error of these estimates (Error), and the upper and 
lower bound of the 95% CI. All parameter estimates converged with an ESS well above 1000 and an R-hat of 1.00. 

Parameter Direct Selection Ray-Casting 

Estimate (Error) 95% CI Estimate (Error) 95% CI 

Fixed Effects (Independent Variables) 
Intercept 6.06 (0.09) [5.87, 6.25] 6.74 (0.08) [6.58, 6.89] 
Weight 0.41 (0.05) [0.31, 0.51] 0.27 (0.07) [0.14, 0.41] 
Walking 0.17 (0.05) [0.08, 0.27] 0.09 (0.06) [-0.03, 0.22] 
Weight:Walking -0.07 (0.07) [-0.21, 0.07] 0.22 (0.10) [0.02, 0.41] 
ID:Weight -0.11 (0.06) [-0.24, 0.02] -0.00 (0.09) [-0.17, 0.17] 
ID:Walking 0.07 (0.06) [-0.05, 0.19] 0.55 (0.08) [0.39, 0.71] 
ID:Weight:Walking 0.14 (0.09) [-0.04, 0.31] -0.24 (0.12) [-0.48, 0.00] 

Fixed Effects (Covariates) 
Order -0.05 (0.00) [-0.06, -0.05] -0.04 (0.00) [-0.04, -0.03] 
Exercise -0.01 (0.01) [-0.03, 0.00] -0.01 (0.01) [-0.02, 0.00] 
ID 0.28 (0.04) [0.20, 0.36] 0.48 (0.06) [0.37, 0.59] 

Random Effects 
Participant (SD) 0.31 (0.04) [0.24, 0.40] 0.24 (0.03) [0.18, 0.32] 

Further Distributional Parameters 
sigma 0.46 (0.00) [0.45, 0.46] 0.63 (0.00) [0.62, 0.64] 
ndt 177.66 (0.77) [176.00, 179.02] 175.36 (3.15) [168.76, 181.18] 

Table 11: Summary of the pointing offset model: offset ~ 1 + (1|participant) + order + exercise + width · (weight · movement). We 
provide the posterior means of parameter estimates (Estimate), posterior error of these estimates (Error), and the upper and 
lower bound of the 95% CI. All parameter estimates converged with an ESS well above 1000 and an R-hat of 1.00. 

Parameter Direct Selection Ray-Casting 

Estimate (Error) 95% CI Estimate (Error) 95% CI 

Fixed Effects (Independent Variables) 
Intercept 2.43 (0.06) [2.31, 2.54] 2.69 (0.05) [2.60, 2.79] 
Weight -0.25 (0.07) [-0.39, -0.11] -0.00 (0.07) [-0.14, 0.13] 
Walking 0.04 (0.06) [-0.06, 0.17] 0.12 (0.06) [-0.01, 0.24] 
Weight:Walking 0.11 (0.10) [-0.09, 0.31] -0.04 (0.10) [-0.23, 0.16] 
Width:Weight 0.00 (0.00) [-0.00, 0.00] 0.00 (0.00) [-0.00, 0.00] 
Width:Walking 0.00 (0.00) [-0.00, 0.00] 0.00 (0.00) [-0.00, 0.00] 
Width:Weight:Walking -0.00 (0.00) [-0.00, 0.00] 0.00 (0.00) [-0.00, 0.00] 

Fixed Effects (Covariates) 
Order 0.01 (0.00) [0.00, 0.02] 0.00 (0.00) [-0.00, 0.00] 
Exercise 0.01 (0.00) [-0.00, 0.01] 0.00 (0.00) [-0.00, 0.01] 
Width 0.01 (0.00) [0.00, 0.01] 0.01 (0.00) [0.01, 0.01] 

Random Effects 
Participant (SD) 0.11 (0.02) [0.08, 0.14] 0.04 (0.01) [0.02, 0.06] 

Further Distributional Parameters 
sigma 0.59 (0.00) [0.58, 0.60] 0.59 (0.00) [0.58, 0.60] 
ndt 0.00 (0.00) [0.00, 0.02] 0.02 (0.02) [0.00, 0.07] 
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Table 12: Summary of the error rate model: error ~ 1 + (1|participant) + order + exercise + ID · (weight · movement). We provide 
the posterior means of parameter estimates (Estimate), posterior error of these estimates (Error), and the upper and lower 
bound of the 95% CI. All parameter estimates converged with an ESS well above 1000 and an R-hat of 1.00. 

Parameter Direct Selection Ray-Casting 

Estimate (Error) 95% CI Estimate (Error) 95% CI 

Fixed Effects (Independent Variables) 
Intercept -5.90 (0.94) [-7.77, -4.09] -4.01 (0.59) [-5.15, -2.87] 
Weight 1.02 (1.36) [-1.64, 3.70] -0.65 (0.81) [-2.23, 0.91] 
Walking 1.93 (1.22) [-0.45, 4.39] 2.05 (0.59) [0.92, 3.20] 
Weight:Walking -1.87 (1.80) [-5.39, 1.67] 0.58 (0.86) [-1.09, 2.30] 
ID:Weight -1.57 (1.77) [-5.12, 1.94] 1.21 (1.02) [-0.74, 3.20] 
ID:Walking -2.69 (1.62) [-5.93, 0.44] -0.11 (0.76) [-1.55, 1.41] 
ID:Weight:Walking 3.73 (2.39) [-1.06, 8.43] -0.82 (1.08) [-2.97, 1.23] 

Fixed Effects (Covariates) 
Order 0.05 (0.06) [-0.07, 0.17] 0.04 (0.02) [-0.00, 0.08] 
Exercise 0.03 (0.03) [-0.02, 0.08] -0.01 (0.02) [-0.04, 0.03] 
ID 0.36 (1.08) [-1.82, 2.41] -0.59 (0.71) [-2.02, 0.75] 

Random Effects 
Participant (SD) 0.78 (0.21) [0.44, 1.25] 0.71 (0.11) [0.53, 0.96] 

Table 13: Summary of the target acquisition throughput model: TP ~ 1 + (1|participant) + order + exercise + 𝐼 𝐷𝑒 · (weight · 
movement). We provide the posterior means of parameter estimates (Estimate), the posterior error of these estimates (Error), 
and the upper and lower bound of the 95% CI. All parameter estimates converged with an ESS well above 1000 and an R-hat of 
1.00. 

Parameter Direct Selection Ray-Casting 

Estimate (Error) 95% CI Estimate (Error) 95% CI 

Fixed Effects (Independent Variables) 
Intercept -0.71 (0.07) [-0.85, -0.57] -1.30 (0.08) [-1.45, -1.14] 
Weight -0.33 (0.04) [-0.40, -0.26] -0.31 (0.06) [-0.43, -0.19] 
Walking -0.26 (0.03) [-0.32, -0.19] -0.21 (0.06) [-0.32, -0.10] 
Weight:Walking 0.08 (0.05) [-0.03, 0.18] -0.16 (0.09) [-0.33, 0.01] 
𝐼 𝐷𝑒 :Weight 0.10 (0.04) [0.02, 0.17] 0.09 (0.06) [-0.03, 0.20] 
𝐼 𝐷𝑒 :Walking 0.11 (0.03) [0.05, 0.18] -0.13 (0.05) [-0.24, -0.03] 
𝐼 𝐷𝑒 :Weight:Walking -0.15 (0.05) [-0.26, -0.05] 0.06 (0.08) [-0.10, 0.23] 

Fixed Effects (Covariates) 
Order 0.04 (0.00) [0.03, 0.04] 0.03 (0.00) [0.02, 0.04] 
Exercise 0.01 (0.01) [-0.00, 0.02] 0.01 (0.01) [-0.00, 0.02] 
𝐼 𝐷𝑒 0.95 (0.02) [0.90, 0.99] 0.86 (0.04) [0.79, 0.94] 

Random Effects 
Participant (SD) 0.24 (0.03) [0.19, 0.32] 0.24 (0.04) [0.18, 0.32] 

Further Distributional Parameters 
sigma 0.39 (0.00) [0.39, 0.40] 0.71 (0.00) [0.70, 0.72] 
ndt 0.00 (0.00) [0.00, 0.00] 0.00 (0.00) [0.00, 0.00] 
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Table 14: Summary of the throughput model: TP ~ 1 + (1|participant) + order + exercise + weight · movement. We provide the 
posterior means of parameter estimates (Estimate), posterior error of these estimates (Error), and the upper and lower bound 
of their 95% CI. All parameter estimates converged with an ESS well above 1000 and an R-hat of 1.00. 

Parameter Estimate (Error) 95% CI 

Fixed Effects (Independent Variables) 
Intercept 4.44 (0.24) [3.99, 4.92] 
Weight -0.82 (0.12) [-1.05, -0.58] 
Walking -2.52 (0.11) [-2.74, -2.31] 
Weight:Walking 0.52 (0.17) [0.19, 0.86] 

Fixed Effects (Covariates) 
Order 0.17 (0.02) [0.13, 0.21] 
Exercise -0.00 (0.02) [-0.04, 0.04] 

Random Effects 
Participant (SD) 0.77 (0.11) [0.58, 1.03] 

Further Distributional Parameters 
sigma 1.05 (0.03) [1.00, 1.10] 

Table 15: Summary of the uncorrected error rate and corrected error rate model: UER/CER ~ 1 + (1|participant) + order + exercise 
+ weight · movement. We provide the posterior means of parameter estimates (Estimate), posterior error of these estimates 
(Error), and the upper and lower bound of their 95% CI. All parameter estimates converged with an ESS well above 1000 and an 
R-hat of 1.00. 

Parameter Uncorrected Error Rate Corrected Error Rate 

Estimate (Error) 95% CI Estimate (Error) 95% CI 

Regression Coefficients 
Intercept -1.38 (0.27) [-1.93, -0.85] -2.45 (0.10) [-2.64, -2.27] 
Weight 0.55 (0.28) [-0.01, 1.11] -0.07 (0.10) [-0.26, 0.13] 
Walking 0.63 (0.22) [0.19, 1.08] 0.47 (0.08) [0.32, 0.63] 
Weight:Walking -0.57 (0.34) [-1.23, 0.09] 0.20 (0.12) [-0.04, 0.44] 

Fixed Effects 
Order -0.02 (0.04) [-0.09, 0.05] -0.03 (0.02) [-0.06, -0.00] 
Exercise 0.01 (0.01) [-0.01, 0.04] 0.00 (0.01) [-0.01, 0.01] 

Random Effects 
Participant: sd(Intercept) 0.40 (0.10) [0.23, 0.61] 0.16 (0.04) [0.09, 0.25] 

Further Distributional Parameters 
phi 1.94 (0.14) [1.67, 2.22] 25.08 (1.53) [22.20, 28.23] 
zi 0.61 (0.02) [0.57, 0.64] 0.30 (0.02) [0.27, 0.34] 
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