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Figure 1: The consumed endurance at 60 seconds. (1) attaching 1 kg weight boosts arm exertion to 80%; (2) bare-hand only
consumed 20%. A more intense red coloration on the shoulder indicates a higher level of fatigue experienced by the user.

Abstract
Fatigue is a major challenge in mid-air interactions, often resulting
in a sensation of heaviness—particularly when users carry weighted
objects on their arms. Existing models for characterising shoulder
fatigue were primarily developed for bare-hand scenarios, limiting
their applicability in situations involving encumbrance. In this pa-
per, we introduce Weight-Induced Consumed Endurance (WICE), a
novel model that accurately estimates shoulder fatigue when ad-
ditional weight is attached at various locations on the arm. WICE
enhances the calculation of instantaneous shoulder torque by in-
corporating information about the attached weight, integrates in-
dividual arm mass for more personalised fatigue estimation, and
uses a Bayesian framework to simulate the distribution of shoulder
fatigue. Our evaluation shows that WICE strongly correlates with
both experimentally measured endurance time and subjective Borg
CR10 ratings, demonstrating its reliability as an objective fatigue
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metric in both encumbered and no-weight conditions. We further
demonstrate how WICE can be applied to examine the effects of
controller and haptic devices on user fatigue. WICE provides a
foundation for developing fatigue-aware systems that can sense
and adapt encumbrance, allowing for more tailored ergonomic MR
interactions.
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1 Introduction
Predicting and effectively managing user fatigue during long in-
teractions in immersive settings like mixed and virtual reality is
crucial. Manufacturers suggest taking breaks every 30 minutes to
prevent fatigue1, but hardly anyone can continuously interact in
mid-air for that long [19, 29, 32]. Previous works have proposed
quantitative models for estimating shoulder fatigue in mid-air in-
teraction [34, 36, 42, 43, 50, 71], but these works overlook a key
issue—encumbrance. This includes the physical load from wear-
able devices, controllers and other equipment used in mixed reality
(MR). Accounting for encumbrance is crucial because MR inter-
actions involve controllers and wearables with weights of their
own that also affect participants’ ability to perform mid-air ges-
tures. Moreover, encumbrance is also prevalent in the professional
and industrial settings in which MR has been used, such as when
wearing safety gear2, protective gloves3, or carrying firefighting
equipment4. Finally, if MR technology aims to achieve widespread
adoption in daily life, there will be scenarios where users engage
with MR devices while carrying objects, such as during shopping
or commuting.

To address this gap, in this paper, we propose a novel model
for predicting both real-time and cumulative shoulder fatigue dur-
ing mid-air interactions called Weight-Induced Consumed En-
durance (WICE). This is the first model to accurately characterise
shoulder fatigue while accounting for the effect of carried objects.
WICE improves instantaneous shoulder torque calculations by in-
corporating carried object information while remaining effective
even in no-weight conditions. It also integrates individual arm
mass information for more personalised shoulder fatigue calcu-
lation. WICE was implemented using a Bayesian framework to
simulate the distribution of shoulder fatigue, allowing for proba-
bilistic rather than single-point estimates. We validated that WICE
correlated strongly with Borg CR10 and accurately predicted em-
pirical endurance times, achieving the best predictive performance
among existing models [34, 42, 43]. We further demonstrate how
WICE can be applied to examine the effects of the controller on in-
teraction fatigue, and provide a foundation for sensing and adapting
to the effects of encumbrance for MR interactions.

Overall, our study contributes to modelling shoulder fatigue in
mid-air interactions by considering the weight attached at various
arm locations. The contributions of this paper are as follows:

• We develop a Weight-Induced Consumed Endurance (WICE)
model to accurately characterise shoulder fatigue with car-
ried objects by enhancing instantaneous shoulder torque
calculations and integrating individual mass information to
replace average mass for more personalised calculation;

• We incorporate a Bayesian framework to simulate the distri-
bution of shoulder fatigue, allowing for probabilistic rather
than single-point estimates;

1https://www.meta.com/au/legal/quest/health-and-safety-warnings/quest-3/ [Ac-
cessed: 2025-03-31]
2https://health.ucdavis.edu/news/headlines/the-future-of-surgery-using-
augmented-reality-goggles-in-the-operating-room/2024/08 [Accessed: 2025-03-31]
3https://deadeyevr.com/products/ultimate-boxing-gloves-quest [Accessed: 2025-03-
31]
4https://youtu.be/UINQiLfAYhY?si=dtFWjzE_qXuFLA1J [Accessed: 2025-03-31]

• We demonstrate how WICE is useful for informing future
interaction designs, particularly in scenarios with carried
objects.

2 Related Work
2.1 Subjective Fatigue Measures
Subjective instruments are often used to measure fatigue levels,
with the most popular approach being the Borg Category-Ratio
scale (Borg CR10) categorising physical exertion using discrete
levels ranging from 0 (no exertion) to 10 (maximum exertion) [12].
The NASA-TLX questionnaire is another popular approach for
measuring subjective task workload [33]. This multidimensional
scale includes the rating of physical demand, which is sometimes
incorrectly used to measure of fatigue. However, this dimension
reflects the demands of the task itself, rather than the individual’s
physical response, and hence does not directly measure fatigue.
In addition, many authors have raised concerns about its psycho-
metric properties and improper use in HCI [7, 40]. Notably, even
the authors of the scale themselves acknowledge that it was not
designed to measure physical fatigue [33].

The Chalder Fatigue Scale is another tool designed to cap-
ture both physical and mental fatigue [35]. It is widely used in
occupational health to quantify fatigue severity and its impact on
daily functioning. Similarly, theMultidimensional Fatigue In-
ventory offers a more comprehensive assessment by evaluating
multiple aspects of fatigue, including general fatigue, physical fa-
tigue, mental fatigue, reduced motivation, and reduced activity [62].
However, one of the subscale dimensions of the Multidimensional
Fatigue Inventory appears to capture anhedonia (i.e., the ability to
experience pleasure or interest in activities that would typically
be enjoyable [67]) instead of fatigue, raising concerns about the
factor structure’s validity [37]. In contrast, the Samn-Perelli Scale
is specifically designed for use in operational settings, such as avia-
tion, where rapid and straightforward assessments are crucial [56].
It employs a simple self-report measure that captures fatigue lev-
els in a format that is both easy to administer and interpret. This
makes it particularly useful in environments where fatigue poses
immediate safety risks [53, 56, 75].

While subjective measures can provide a general estimate of fa-
tigue, they have certain limitations. First, these measurements may
struggle to detect subtle but meaningful gradations in a person’s fa-
tigue level or related constructs, as the limited number of response
options restricts the granularity of the data [34, 42, 43]. Second, an
individual’s mental model can influence how they interpret these
scales, which could potentially introduce bias [12, 40, 43]. For ex-
ample, an individual’s expectations about health or performance
can shape how one interprets phrases like “moderate fatigue” or
“severe fatigue”. Third, subjective measures are typically collected
retrospectively or at discrete time points, making them unsuitable
for building systems that require continuous, real-time adaptation
to a user’s fatigue state.

Nevertheless, due to the inherently subjective nature of fatigue,
self-reported ratings are commonly used to validate more objective
measures. The assumption is that if both objective and subjective
measures capture the same latent construct, they should be cor-
related. Therefore, in this study, we follow approach from prior

https://www.meta.com/au/legal/quest/health-and-safety-warnings/quest-3/
https://health.ucdavis.edu/news/headlines/the-future-of-surgery-using-augmented-reality-goggles-in-the-operating-room/2024/08
https://health.ucdavis.edu/news/headlines/the-future-of-surgery-using-augmented-reality-goggles-in-the-operating-room/2024/08
https://deadeyevr.com/products/ultimate-boxing-gloves-quest
https://youtu.be/UINQiLfAYhY?si=dtFWjzE_qXuFLA1J


WICE: A Model toQuantify Shoulder Fatigue with Weighted Objects UIST ’25, September 28–October 01, 2025, Busan, Republic of Korea

Table 1: The comparison of the latest shoulder fatigue models.

Models Estimates
endurance time

Does not rely on
physiological sensors

Calculates
recovery period

Models carried
objects

Personalised arm
mass calculation

CE [34] ✓ ✓ ✗ ✗ ✗

CF [36, 71] ✗ ✗ ✓ ✗ ✗

NICE [42] ✓ ✓ ✗ ✗ ✗

NICER [43] ✓ ✓ ✓ ✗ ✗

WICE (Ours) ✓ ✓ ✓ ✓ ✓

research [34, 42, 43] and employ the Borg CR10—which is a straight-
forward approach for categorising physical exertion—as a subjective
measure of fatigue to cross-reference participants’ perceptions of
fatigue with the model’s estimates.

2.2 Objective Fatigue Measures
The relationship betweenmuscular exertion and fatigue has been ex-
tensively studied in different fields (e.g., sports science, ergonomics,
and physiology). Methods range from external assessments, such
as monitoring muscle swelling [9], muscle oxygenation [26], heart
rate [10], and blood flow and pressure [61], to invasive techniques
like measuring intra-arterial levels of lactate and potassium [61].

However, these approaches require specialised equipment, such
as galvanic skin response (GSR) [60, 72], electrocardiogram (ECG) [45,
47, 54], electromyography (EMG) devices, and dynamometers, which
limit user interaction with mid-air systems and are impractical for
designing interactive systems [34]. Prior research has found a strong
correlation between Borg CR10 ratings and EMG-based metrics for
shoulder muscles, suggesting that either method can effectively
assess shoulder fatigue [51, 68]. Additionally, studies have found
the Borg CR10 scale to be more reliable than EMG metrics [34]. At
low exertion levels, such as those involved in optimised mid-air
gestures, EMG metrics are not valid indicators of fatigue [49]. Fur-
thermore, EMG metrics exhibit lower repeatability compared to
Borg CR10 [23], and their validity is highly task-specific [25].

Unlike these methods [8, 9, 61], models based on motion track-
ing as enabled through camera-based systems (e.g., OptiTrack, Mi-
crosoft Kinect, Meta Quest) provide an objective, non-invasive way
to estimate shoulder fatigue. These approaches can be seamlessly in-
tegrated into interactive systems [34]. They rely on biomechanical
models to estimate endurance, using inputs such as user character-
istics (e.g., sex, weight) and a time series of joint angles captured by
the motion tracking system (i.e., the output of the motion capture
system). This is the approach that our work takes, so in the next
subsection, we go through these models in detail. Table 1 shows a
comparison of the characteristics of these models.

2.3 Modeling Fatigue in Mid-Air Interaction
Fatigue is a state of reduced capacity and weariness resulting from
decreased endurance over time [1]. In essence, fatigue arises when
the body can no longer meet the demands of continued exertion,
impacting performance and endurance. This form of work-related
physical fatigue is distinct from chronic fatigue linked to long-
term medical conditions and is generally relieved through a period
of recovery [52]. In the context of quantifying shoulder fatigue,

Hincapié-Ramos et al. [34] proposed the consumed endurance as
“a metric for characterising shoulder fatigue or gorilla-arm effects
resulting from mid-air interactions”. This measure is conceptual in
nature and reflects the proportion of an individual’s endurance ca-
pacity that has been used, combining both subjective and objective
assessments. In this work, we take a similar approach, operationalis-
ing shoulder fatigue as consumed endurance, and validate using the
perceived exertion (e.g., Borg CR10 rating). We did not incorporate
EMG data, as the relationship between fatigue and endurance time
is well established in previous fatigue models.

Endurance Time (ET) refers to the duration an individual can
sustain a specific level of exertion before reaching failure or needing
to rest [34, 55]. Rohmert’s Endurance Time (ET) model [55] was
the first model relevant to dynamic mid-air interactions to quantify
the relationship between endurance time and shoulder fatigue using
a power curve, as illustrated in Equation 1. The ET model assumes
comparability between the maximum exerted force that a group of
muscles can produce under controlled (Max Force) and the current
force (Force) when characterising shoulder fatigue.

𝐸𝑇 =
1236.5(

Force
Max Force × 100 − 15

)0.618 − 72.5 (1)

The Consumed Endurance (CE) model [34] enhances the ET
model by estimating shoulder fatigue using the shoulder torque, as
shown in Equation 2. Torque—the product of force and the lever arm
distance—captures not only how much force is being applied but
also how far from the joint that force is acting. The shoulder joint
is often the pivot point during mid-air interaction. By considering
the lever arm, torque calculations more accurately represent the
mechanical stress on the muscles involved in holding or moving the
arm in space. The cumulative average exertion level is calculated
by normalising the average torque experienced on the shoulder
(𝜏shoulder ) with the maximum shoulder torque (𝜏max ). The CE model
enables an indirect quantification of fatigue by representing physi-
cal effort as the ratio of time spent to the estimated ET, as shown
in Equation 3. CE serves as a guide for VR designers in selecting
interaction gestures that align with the desired fatigue level [34, 43].

𝐸𝑇 =
1236.5(

𝜏shoulder
𝜏max

× 100 − 15
)0.618 − 72.5 (2)

𝐶𝐸 (𝑇,Δ𝑡) = Δ𝑡

𝐸𝑇
× 100 (3)

In an initial evaluation, the CEmodel showed a strong correlation
with the Borg CR10 scale and demonstrated its potential to inform
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interaction design [34]. However, themodel is limited in its ability to
predict the effort of low-intensity activity, to differentiate between
low-intensity activity and high-intensity activity, and to predict the
consumed endurance with arm positioned at angles greater than
90◦ [42, 43].

The original Cumulative Fatigue (CF) [36] and advanced
CF [71] models improved the maximum shoulder torque estimation
by using a gesture-based maximum strength model [17] based on
the elbow extension angle and shoulder abduction angle. However,
the CF model requires force information from the physiological
sensors. Besides, CF relies on a supervised learning approach to
estimate subjective fatigue ratings, which limits its ability to es-
timate the endurance time. Therefore, we do not consider the CF
models [36, 71] in this work.

To address the limitation of CE not being able to accurately
estimate the recovery period and distinguish between low and
high intensity activities, the New and Improved Consumed En-
durance (NICE) [42] and NICE with Recovery Factor (NICER)
[43] models were developed as advancements over Rohmert’s ET
model by implementing empirically-derived, revised ET models.
The NICE model builds upon the original CE model by incorpo-
rating static shoulder positions; however, it does not account for
dynamic arm movements. The NICER model further advances this
approach by introducing a shoulder-specific Endurance Time (ET)
model, as shown in Equations 4 and 5. This model is derived from
a meta-analysis of ET data, incorporating both static and dynamic
arm gestures based on findings from prior studies [28].

𝐸𝑇 =
14.86(

𝜏shoulder+𝐶 (𝛼shoulder )
𝜏max

· 100
)1.83

· 0.000218
(4)

𝑁𝐼𝐶𝐸𝑅 =
Δ𝑡

𝐸𝑇
· 100 (5)

The NICER added a correction term for the shoulder torque
(Equations 6 and 7) when the shoulder angle is above 90◦. Besides,
NICER integrates a recovery factor to account for the effect of rest
periods, calculated in Equation 8. For more detailed calculations,
please refer to the original papers [34, 43] and Appendix A.

𝐶female (𝛼shoulder ) = 0.0095·1005
1+exp

(
66.40−𝛼shoulder

7.83

) − sin(𝛼shoulder · 2𝜋360 )
0.11

{90◦ < 𝛼shoulder < 180◦}
(6)

𝐶male (𝛼shoulder ) = 0.0095·1230
1+exp

(
66.40−𝛼shoulder

7.83

) − sin(𝛼shoulder · 2𝜋360 )
0.09

{90◦ < 𝛼shoulder < 180◦}
(7)

𝑁𝐼𝐶𝐸𝑅rest = 𝑁𝐼𝐶𝐸𝑅 · exp−0.04·Δ𝑡 (8)
The CF and NICE models were developed based on experiments

where participants held weights from 0 kg to 3 kg in their hands to
refine the curve of the maximum endurance time. However, these
models do not explicitly incorporate the effect of added weight into
their formulas for computing consumed endurance. As a result,
they are unable to accurately simulate endurance time in scenar-
ios involving weighted objects. This limitation is significant, as
virtual interactions frequently involve handheld devices such as
controllers or haptic tools, which contribute to fatigue and reduced

performance. In addition, Li et al. [43] capped the maximum en-
durance time at 5 minutes, which artificially reduced its range in
the model estimation. O’Sullivan et al. [50] considered the impact of
carrying objects, but their approach assumed the object’s mass was
evenly distributed across the limbs and focused solely on handheld
items. However, in HCI applications, devices are often worn or
held at specific points on the arm, concentrating weight at those
locations. To address this, we propose a weighted object component
within the NICER model framework that accounts for weights at-
tached at various positions along the arm. Furthermore, all previous
models for characterising shoulder fatigue use a standard average
arm mass and a fixed maximum shoulder torque [27, 64]. How-
ever, such an approach fails to account for individual differences
in weight and height, thereby limiting its personalisation potential.
Additionally, all of these models only estimate shoulder fatigue for
a bare hand (i.e., without attaching extra weights); hence, if a user is
holding a controller, the model will underestimate shoulder fatigue.

To address this research gap, our goal is to capture the proportion
of an individual’s consumed endurance capacity without limiting
the user’s interaction with mid-air systems. Our model also aims to
account for variations in the user’s weight and height, and consider
the effect of carried objects on mid-air interactions.

3 WICE: Weight-Induced Consumed Endurance
Model for Mid-Air Interaction

Our work aims to produce a ready-to-use comprehensive fatigue
model that accounts for the weight of objects held, carried, or
worn during mid-air interactions. We investigated the strengths
and limitations of existing fatigue models in the literature and
summarised them in Table 1. In this section, we elaborate on the
calculation of CE andNICERmodels (Section 3.1) and introduce new
extensions: (1) a personalised arm segment mass for the calculation
of the arm’s centre of mass (CoM) (Section 3.2); (2) a weighted object
component for determining the force resulting from the attached
weighted object (Section 3.3); (3) a Bayesian regression approach
for estimating endurance in a range (Section 3.4). The complete
calculation of WICE is detailed in Appendix A.

3.1 Revisiting CE and NICER Models
We base the WICE model on the state-of-the-art shoulder fatigue
model (NICER) as shown in Equation 4, where the calculation relies
on the shoulder torque (𝜏shoulder ) and the maximum shoulder torque
(𝜏max ) to estimate the instantaneous exertion of the currently per-
formed arm gesture. To determine the maximum shoulder torque
(𝜏max ), the CE model uses fixed sex-specific values: 22.94Nm for
males and 18.57Nm for females [27, 64]. The NICER model im-
proves this estimate by considering the elbow extension angle and
shoulder abduction angle as shown in Equation 9. This follows cal-
culations proposed by Schanne [59] and validated by Chaffin [17].
In this equation, 𝛼elbow is the elbow extension angle, and 𝛼shoulder
is the shoulder abduction angle. The 𝜏max estimate then considers
sex differences through a multiplicative factor 𝐺 (𝐺female = 0.1495,
𝐺male = 0.2845). We adopted this value for calculation of 𝜏max in
our model.

𝜏max = (227.338 + 0.525 · 𝛼elbow − 0.296 · 𝛼shoulder ) ·𝐺 (9)
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Equation 10 defines the total torque (
∑ ®𝜏 ) acting on the shoulder

at a specific time. The first torque, caused by gravity (®𝑔) acting on
the arm’s mass (𝑀arm) at the centre of mass (CoM), located at a
distance (®𝑟 ) from the shoulder joint (®𝑟 =

−−−−−−→
Sh CoM), pulls the arm

downward. The second torque, generated by the shoulder muscles,
counteracts gravity and facilitates arm movement. The final torque
arises from the arm’s inertia and angular acceleration (®𝛼), reflecting
the arm’s tendency to maintain its rotational motion once initiated.∑︁

®𝜏 = ®𝑟 × (𝑀arm · ®𝑔) + ®𝜏shoulder + ®𝐼𝑡 × ®𝛼 (10)

When the arm is static, both
∑ ®𝜏 and 𝐼 ®𝛼 are zero, meaning

∥®𝜏shoulder ∥ = ∥®𝑟 × (𝑀arm · ®𝑔)∥. In other words, the shoulder must
generate torque equal to the gravitational torque. However, when
the arm is in motion,

∑ ®𝜏 and 𝐼 ®𝛼 are no longer zero. Thus, the equa-
tion for calculating the instantaneous shoulder torque at time 𝑡 is
shown in Equation 11.

𝜏shoulder,t =



®𝑟 × −−−→

forcemotion,t −
(
®𝑟 × (𝑀arm · ®𝑔) + ®𝐼𝑡 × ®𝛼𝑡

)


 (11)

®𝑟 is the vector from the shoulder joint to the centre of mass
(CoM) of the arm (®𝑟 = −−−−−−→

Sh CoM). ®𝑔 is the interaction of gravity and
𝑀𝑎𝑟𝑚 is the mass of the arm at the CoM. The force acting at the
CoM (

−−−→
forcemotion,t ) depends on the acceleration ( ®𝑎𝑡 ) at time 𝑡 and

the arm mass (𝑀arm) as shown in Equation 12, where the ®𝑎𝑡 can be
calculated using the current arm location and time.

−−−→
forcemotion,t = 𝑀arm · ®𝑎𝑡 (12)

®𝐼𝑡 represents the moment of inertia about the shoulder axis,
as defined in Equation 13. For a multi-segment structure like the
arm, the total inertia is expressed as a vector whose magnitude
is the sum of the inertias of each individual segment (®𝐼arm) [34].
The direction of this vector is determined by the unit vector ( ®𝑈𝑡 ),
which is derived from the cross product related to the movement
of the centre of mass. The ®𝑈𝑡 can be calculated using Equation 14,
and




®𝐼arm


 can be calculated using Equation 15, where CE used
0.0201 as the average arm inertia [27, 34, 64]. The inertia for each
segment can be calculated using Equation 16, where 𝑓 is the period
of oscillation [27]. ®𝛼𝑡 is the angular acceleration at time 𝑡 as shown
in Equation 17.

®𝐼𝑡 =



®𝐼arm


 · ®𝑈𝑡 (13)

®𝑈𝑡 =
®𝑟𝑡−1 ×

−−−−−−−−−−−−−→
CoM𝑡−1 CoM𝑡


®𝑟𝑡−1 × −−−−−−−−−−−−−→
CoM𝑡−1 CoM𝑡




 (14)




®𝐼arm


 = 


®𝐼UA


 + 


®𝐼FA


 + 


®𝐼𝐻 


 (15)

®𝐼 =
®𝑟 × (𝑀segment · ®𝑔)

4𝜋2 𝑓 2
(16)

®𝛼𝑡 =
®𝑎𝑡
∥®𝑟 ∥ (17)

3.2 Personalized Arm Center of Mass
Calculation (CoM)

Sh (0, 0, 0)

Eb

Wr

HaA

B

CD

CoM
O

Figure 2: Arm segments that are used to calculate the centre
of mass.

From Section 3.1 we can see that CoM is one of the most im-
portant part in calculating shoulder fatigue. The CoM for a two-
segment structure lies along the line connecting the CoMs of each
segment. Its position from the first segment’s CoM is determined
by the ratio of the second segment’s mass to the total mass of both
segments. Figure 2 illustrates the arm as a system with three seg-
ments: the upper arm (UA from Sh to Eb), forearm (FA from Eb to
Wr), and hand (𝐻 from Wr to Ha).

Previous models use the population average as the arm mass
value. However, this estimate can be improved by considering in-
dividual characteristics. Therefore, we followed Freivalds [27] to
estimate the mass for each arm segment based on the individual’s
body mass (see Table 2 for the factors used in this calculation).

Table 2: Gross anthropometric data for the upper limbs that
are used to calculate the centre of mass.

Segment Segment mass to
body mass ratio

Segment CoM to
segment length ratio
(from proximal end)

Upper Arm (UA) 0.029 0.452
Forearm (FA) 0.018 0.424
Hand (H) 0.008 0.397

Based on Table 2, the mass of each segment can be calculated as
follows, where𝑀𝑏𝑜𝑑𝑦 is the body mass in kg:

𝑀UA = 0.029 ·𝑀body (18)

𝑀FA = 0.018 ·𝑀body (19)
𝑀𝐻 = 0.008 ·𝑀body (20)

𝑀arm = 𝑀UA +𝑀FA +𝑀𝐻 (21)
Thus, the newCoM for each segment can be calculated as follows:

®𝐴 = 0.452 ·𝑀UA · −−−−→Sh Eb (22)

®𝐵 = 0.424 ·𝑀FA · −−−−−→Eb Wr (23)
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®𝐶 = 0.397 ·𝑀𝐻 · −−−−−→Wr Ha (24)

®𝐷 = ®𝐵 + 𝑀𝐻

𝑀FA +𝑀𝐻
· −→𝐵𝐶 (25)

−−−−→
𝐶𝑜𝑀′ = ®𝐴 + 𝑀FA +𝑀𝐻

𝑀arm
· −−→𝐴𝐷 (26)

Based on the new
−−−−→
𝐶𝑜𝑀′, we can calculate a more precise 𝜏shoulder

for each individual.

3.3 Weight Component Calculation (𝜏weight)
Similar to the calculation of bare-hand shoulder torque, the force
exerted on the arm is equal to the gravitational force of the object,
as all forces acting on the arm ultimately counteract gravity [31].
Therefore, the force can be determined using Equation 27, where ®𝑔
represents the gravitational acceleration at the attachment point,
and𝑀object denotes the mass of the weighted object.

®𝐹weight = 𝑀object · ®𝑔 (27)
Therefore, the weighted object torque can be calculated in Equa-

tion 28, where ®𝑟𝑜 is the vector from shoulder to theweighted object’s
centre (®𝑟𝑜 =

−−−→
Sh O) as shown in Figure 2. The ®𝜏weight is 0 when no

weight is attached to the arm.

®𝜏weight = ®𝑟𝑜 × ®𝐹weight (28)
Based on the calculation of ®𝜏weight , the total torque (

∑ ®𝜏) acting
on the shoulder with weight attached to the arm can be calculated in
Equation 29. Therefore, we propose the new equation for calculating
shoulder torque at time 𝑡 in Equation 30.∑︁

®𝜏 = ®𝜏weight + ®𝑟 × (𝑀arm · ®𝑔) + ®𝜏shoulder + ®𝐼𝑡 × ®𝛼 (29)

𝜏shoulder,t =



®𝑟 × −−−→

forcemotion,t − (®𝜏weight + ®𝑟 × (𝑀arm · ®𝑔) + ®𝐼𝑡 × ®𝛼𝑡 )





(30)

3.4 Bayesian Regression Model
Because we incorporate each individual’s armmass instead of using
an average arm mass and revise the 𝜏max based on each individ-
ual’s maximum endurance time, we obtain personalised 𝜏max and
𝜏shoulder . Hence, we can model a range of the WICE values from
different participants and different trials under the same condition.
We employed Bayesian statistical methods in our analysis due to
their enhanced flexibility, capacity to quantify uncertainty, and abil-
ity to facilitate future work to build upon it [14, 46]. This method is
commonly used in HCI research [14] and studies that analysed the
encumbrance effect [41]. Thus, we use a Bayesian regression model
to simulate the range of WICE as shown in Equation 31, where
𝜇 is the exertion level as shown in Equation 32. Coefficients a, b,
and c are provided along with their corresponding 95% compati-
bility intervals (see Section 5.1 for further details). The complete
calculation of WICE is shown in Appendix A.

𝑊𝐼𝐶𝐸 ∼ N(𝜇, 𝜎) (31)

𝜇 =

Δ𝑡 ·
(
𝜏shoulder+𝐶 (𝛼shoulder )

𝜏𝑚𝑎𝑥
· 100

)𝑏
· 𝑐

𝑎
· 100 (32)

4 User Study
To validate the maximum shoulder torque (𝜏max ) for use over a
wide range of motion in MR interactions, we designed a study that
closely follows the design from CE [34], CF [36], and NICER [42].
In this study, we evaluated participants’ endurance levels using an
MR task, which was to lift a weighted object in front of the view
with the required weight at the desired arm angle (Figure 3). The
study was approved by our university’s Human Ethics Committee.

4.1 Task and Apparatus

1 2

90°

Time

Borg CR10

Figure 3: The experimental setup. The sandbag is attached
either to location 1 (elbow) or location 2 (wrist) at a time. The
red circle indicates the desired arm angle at 90◦ ± 5◦.

The task involves participants sitting down and alternately lift-
ing their left and right arms to a 90◦ position with the arm fully
extended in front of the body. A sandbag is attached either to loca-
tion 1 (elbow) or location 2 (wrist) during the task (Figure 3). We
instructed our participants to maintain the posture until they could
no longer continue. We placed the Borg CR10 scale (Appendix B)
in front of the participants for their reference. During each trial,
participants verbally reported their perceived fatigue every 20 sec-
onds [36]. We used adjustable sandbags weighing 0.5 kg, 1.0 kg,
1.5 kg, and 2.0 kg, with no-weight (0 kg) condition as the baseline.
These additional weight increments provided a greater number of
data points, enhancing the precision of fatigue estimation com-
pared to previous models and evaluations of encumbrance [41]. We
attached the sandbag on two locations—the elbow and the wrist—
as these are commonly engaged in daily activities and have been
explored in previous studies [41].

We instructed participants to alternate lifting their left and right
arms to allow them to fully recover between trials. We considered
the engagement of both hands during mid-air interactions, rather
than just the dominant hand, to replicate a realistic MR interaction
scenario. Furthermore, we employ a Bayesian model to simulate the
distribution of maximum endurance times across all participants. By
randomly sampling measurements from both left and right hands,
we capture a more comprehensive range of potential endurance
limits. Consequently, our estimates are marginalised over both
hands.

The arm angle between the participant’s arm and their torso
was set at 90◦, a standard used in previous research to improve
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Figure 4: The experimental procedure.

the calculation of maximum shoulder torque [36]. This angle was
chosen because endurance levels tend to increase gradually with
higher arm angles, stabilising when the angle exceeds 90◦ [42, 43].
Therefore, we adopted 90◦ as our standard arm angle to clearly
differentiate endurance levels. Participants received visual feedback
in the form of a red circle and were instructed to keep their arm
position within this circle to maintain it within the target range.

To measure the maximum possible duration, we set the trial
duration to infinite, following previous methodologies aimed at
validating maximum shoulder torque [36]. Trials concluded when
participants were unable to maintain their arms within ±5◦ of the
target angle for more than 2 seconds [36, 42].

We collected arm movement data using a Meta Quest 3 headset
in a custom MR environment developed with the Unity 2022.3.58f1
engine. Participants wore the Meta Quest 3 headset, and similar
to [43], we recorded arm movements using the Meta Movement
SDK5. The location of the weighted object (®𝑟𝑜 ) in Equation 28 was
considered identical to the corresponding joint location.

4.2 Participant and Procedure
We recruited 38 participants (19 women, 19 men, including 3 left-
handed individuals), aged between 19 and 55 years, with heights
ranging from 158 cm to 186 cm, and weights from 45 kg to 103.5
kg. Our recruitment focused on an age range of 19–55—targeting
current MR device users who may engage in mid-air interactions [4,
20]—which is consistent with, or even broader than, the ranges
used in previous studies on shoulder fatigue [34, 36, 42, 43]. To
mitigate fatigue effects, we employed a between-within (mixed)
design across participants, examining two attachment locations
(elbow and wrist) with four weight levels (0.5 kg, 1.0 kg, 1.5 kg,
and 2.0 kg), alongside a baseline condition—without any additional
weight attached. We employed a mixed-effects regression model to
account for the hierarchical structure of our data, where modelling
each participant as a random effect. Therefore, it is sufficient for
each participant to conduct five trials. The order of conditions was
randomly presented to the participants [41]. Therefore, any random

5https://developers.meta.com/horizon/documentation/unity/move-unity-getting-
started/ [Accessed: 2025-03-31]

effects would be distributed evenly across trials, minimising the
impact of any confounding fatigue and/or learning effects.

When participants arrived at our lab, we first provided themwith
an overview of the study’s purpose. After ensuring they understood
the procedure and agreed to participate, we asked them to sign the
consent form. Next, we measured each participant’s weight using a
body fat scale; this measurement allowed us to calculate the mass of
individual arm segments accurately. To minimise any confounding
effects, we asked participants to wear light clothing and remove any
heavy clothing (e.g., winter jackets). Participants then completed a
background questionnaire, which collected demographic details, in-
cluding sex, age, and dominant hand. We gathered this information
to confirm that our participant group represented a wide range of
demographics and physical characteristics, thus reducing potential
biases in our results.

Then, participants then performed the task according to the re-
searcher’s instructions. Between switching from one arm to the
other, participants received approximately three minutes of rest.
Before beginning each new trial, we checked with participants to
confirm that they felt sufficiently rested. Additionally, while one
arm performed the task, participants could keep the other arm
relaxed. The entire study took approximately 60 minutes per par-
ticipant. Figure 4 illustrates the complete experimental procedure
in detail.

5 Results
We illustrated the calculation of WICE in Section 5.1. We then as-
sessed the validity of WICE as a measure of fatigue by 1) comparing
the model performance on the estimated endurance time with the
ground truth endurance time on all conditions, including the base-
line (Section 5.2), and 2) comparing the model performance on the
estimated consumed endurance with the ground truth consumed
endurance on all conditions including the baseline (Section 5.3).

5.1 WICE Model
We calculated the maximum endurance time (ET) of the WICE
model using a Bayesian regression model with a shifted Log-normal
distribution. In the WICE model, 𝜏shoulder , 𝜏max , and 𝐶 (𝛼shoulder )

https://developers.meta.com/horizon/documentation/unity/move-unity-getting-started/
https://developers.meta.com/horizon/documentation/unity/move-unity-getting-started/
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were treated as independent variables. We included Participant as a
random effect to account for the hierarchical structure of the data.
We conducted a preliminary analysis to examine the effect of age on
the experimental maximum ET. A leave-one-out cross-validation
indicated that including age as a fixed effect did not enhance model
performance compared to a model without age. This result suggests
that age does not significantly influence ET once we accounted
for other individual characteristics; therefore, we excluded it from
the model’s fixed parameters. For the Bayesian model, we adopted
priors based on prior work, as in Equation 9. The variables included
in the final model are listed below:

• 𝜏shoulder : A numeric variable indicating the instantaneous
shoulder torque under different conditions, which was cal-
culated from Equation 30.

• 𝜏max : A numeric variable indicating the maximum shoulder
torque under different conditions, which was calculated from
Equation 9.

• 𝐶 (𝛼shoulder ): A numeric variable indicating the correction
term of the shoulder above 90◦, calculated using Equations 6
and 7 as in NICER [43].

• Participant: A categorical variable used to model individual
random effects.

We fit our models using the brms package [15], which imple-
ments Bayesian multilevel models in R using the Stan probabilistic
programming language [16]. To ensure reliable results, we eval-
uated the convergence and stability of the Markov Chain Monte
Carlo sampling using the R-hat statistic, confirming values below
1.01 [70], and verified that the Effective Sample Size (ESS) exceeded
1000 [15]. We report the posterior means of parameter estimates,
the error of these estimates, and the upper and lower bounds of the
95% compatibility interval (i.e., credible interval, CI) [15]. These in-
tervals represent the range within which there is a 95% probability
that the true parameter values lie. We note that Bayesian statistics
does not use p-values; therefore, our results should not be inter-
preted in terms of “statistical significance”. The coefficients used
to calculate the maximum endurance time for WICE are provided
in Table 3. For full transparency, we upload all our analysis scripts
and results in the supplementary material.

5.2 Maximum Endurance Time Validation
Based on the ET model presented in Section 5.1, we evaluated the
performance of the models using leave-one-out cross-validation,
which provides a practical way to compare models on the basis of
their predictive performance [69]. This method helps in selecting
a model that is not only a good fit for the observed data but also
has strong predictive power, especially when the dataset is small.
It helps maximize the use of available data for both training and
testing. We compared our model performance on the maximum
endurance time with CE [34], NICE [42], and NICER [43].

Table 4 presents the estimated differences in expected log pre-
dictive density (ELPD Diff) along with their corresponding stan-
dard errors (SE Diff), comparing each model against WICE. The
WICE model serves as the reference due to its superior performance
(ELPD Diff = 0.0, SE Diff = 0.0). Lower or negative differences in
expected log predictive density indicate poorer predictive perfor-
mance. As can be seen from Table 4,WICE consistently outperforms

Table 3: Summary of the model in log scale:
ET ∼ a(

𝜏shoulder+C(𝛼shoulder )
𝜏max

×100
)b
×c

+ (1|Participant). We pro-

vide the posterior means of parameter estimates (Estimate),
posterior error (Error), and the upper and lower bounds of
their 95% CI. All parameter estimates converged with an ESS
well above 1000 and an R-hat of 1.00.

Log Scale Original Scale

Coef. Est. (Err.) 95% CI Est. (Err.) 95% CI

Multilevel Hyperparameters
sd(b) 0.04 (0.01) [0.03, 0.05] 1.04 (1.01) [1.03, 1.05]

Regression Coefficients
a 2.18 (1.15) [0.38, 4.75] 8.84 (3.16) [1.46, 115.66]
b 0.39 (0.03) [0.33, 0.45] 1.48 (0.04) [1.39, 1.57]
c 0.14 (0.07) [0.03, 0.29] 1.15 (0.08) [1.03, 1.34]

Further Distributional Parameters
sigma 0.32 (0.02) [0.28, 0.36] 1.38 (0.03) [1.32, 1.43]
ndt 5.35 (3.19) [0.34, 11.85] 211 (24.29) [1.40, 140084]

all other models in estimating the maximum endurance time across
all conditions. The NICER, CE, and NICE models show consider-
ably larger negative differences in maximum endurance time (ELPD
Diff = -366.3, -616.4, and -863.8, respectively), indicating substan-
tially poorer predictive accuracy compared to the WICE model.
The relatively small standard errors compared to these differences
further emphasise that the performance gaps between the models
are substantial. In addition, the results suggest that WICEmaintains
consistently strong performance across all examined conditions:
female, male, weighted object, and baseline. Notably, under the
baseline condition—where no additional torque from the weighted
object was introduced—NICER demonstrated strong performance;
however, WICE consistently outperformed the other evaluated
methods using the leave-one-out cross-validation method.

We further assessed model performance by calculating the Pear-
son Correlation Coefficient (𝜌), which measures the strength of
the linear relationship between the models’ posterior predictions
and the observed experimental data. This metric has previously
been employed to evaluate fatigue models [42, 43]. Specifically,
we computed 𝜌 between the maximum endurance times predicted
by ET WICE, ET NICER, ET NICE, and ET CE, and the ground
truth maximum endurance times obtained during our experiment.
The coefficient ranges from -1 to 1, with values equal or greater
than 0.5 indicating a strong correlation and those equal or above
0.3 suggesting a moderate correlation [22]. Table 5 shows that the
WICE model achieves the highest correlation with the ground truth
maximum endurance times across all conditions (overall Pearson
correlation = 0.84, 95% CI = [0.80, 0.88]). In contrast, the CE, NICE,
and NICERmodels show nomeaningful correlation with the ground
truth endurance times observed in our experiment.

Figure 5 illustrates the posterior predictions of maximum en-
durance time for each model, separated by sex and attachment
location (elbow and wrist). Models whose predictions closely match
the ground truth indicate better predictive accuracy. As illustrated
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Table 4: The estimated difference in expected log predictive density (ELPD Diff) and their corresponding standard errors (SE
Diff) when comparing the performance of each model on maximum endurance time.

ELPD Diff (SD Diff)

Models Overall Female Dataset Male Dataset Baseline Dataset Weighted Object Dataset

ET WICE 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)
ET NICER -366.3 (15.1) -173.5 (12.9) -192.9 (7.8) -76.8 (5.1) -289.5 (14.2)
ET CE -616.4 (17.1) -320.4 (14.5) -296.0 (8.9) -113.6 (6.6) -502.8 (15.6)
ET NICE -863.8 (17.1) -423.2 (14.9) -440.6 (8.2) -171.2 (5.6) -692.6 (16.1)

Table 5: Pearson correlation coefficients results (with 95% confidence intervals) between the ground truth maximum endurance
time and the estimated maximum endurance time obtained fromWICE, NICER, NICE, and CE across different scenarios.

Correlation (95% CI) between ground truth ET and estimated ET

Models Overall Female Dataset Male Dataset Baseline Dataset Weighted Object Dataset

ET WICE 0.84 (0.80, 0.88) 0.84 (0.77, 0.89) 0.83 (0.76, 0.89) 0.78 (0.62, 0.88) 0.85 (0.79, 0.89)
ET NICER 0.14 (-0.00, 0.27) -0.11 (-0.30, 0.10) -0.08 (-0.28, 0.12) 0.09 (-0.23, 0.40) 0.23 (0.08, 0.38)
ET NICE -0.15 (-0.29, -0.01) -0.09 (-0.29, 0.11) -0.03 (-0.23, 0.17) -0.12 (-0.42, 0.20) -0.21 (-0.35, -0.05)
ET CE -0.15 (-0.29, -0.01) -0.09 (-0.29, 0.11) -0.02 (-0.22, 0.18) -0.10 (-0.40, 0.23) -0.21 (-0.36, -0.05)
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Figure 5: Comparison of endurance time (ET) predictions
across different models by weight and sex, with separate pan-
els for measurement locations (Elbow and Wrist). Models
that closely align with the Ground Truth provide better esti-
mations of maximum endurance time.

in Figure 5, the CE and NICE models underestimate the maximum
ET across all experimental conditions. Moreover, these models do
not adequately reflect differences between attachment locations
and show minimal variation across weight levels. In particular, the
NICER model exhibits substantial discrepancies at higher weights,
even displaying a slight increase in predicted ET when weights are
attached to female participants—a pattern inconsistent with the
observed ground truth. In contrast, the WICE model provides pre-
dictions much closer to the ground truth, demonstrating superior

alignment across sex, weight levels, and attachment locations. Addi-
tionally, the ground truth endurance times differ slightly depending
on the attachment location, suggesting that weight impacts each lo-
cation differently. TheWICEmodel successfully captured these vari-
ations. These findings demonstrate that the WICE model provides
the most reliable predictions of maximum endurance time, whereas
CE, NICE, and NICER exhibit systematic biases—underestimating
or overestimating endurance times.

5.3 Consumed Endurance Evaluation
Throughout this paper, we have demonstrated that WICE provides
more accurate estimates of maximum endurance compared to CE,
NICE, and NICER. In this section, we further evaluate each model’s
performance in characterising shoulder fatigue. Specifically, we as-
sess the endurance consumed at 60 seconds—themaximum duration
previously used for performance evaluation in the CE model—as
this interval clearly highlights differences across various weight
conditions.

We computed the Pearson Correlation Coefficient (𝜌) to evaluate
how closely each model’s posterior predictions matched the ground
truth for consumed endurance at 60 seconds (computed from the
total endurance time). We compared predictions from CE, NICE,
NICER, and WICE against this ground truth. The coefficient ranges
from -1 to 1, with values equal to or above 0.5 indicating strong
correlations and those equal to or above 0.3 suggesting moderate
correlations [22]. As shown in Table 6, WICE significantly outper-
formed the CE, NICE, and NICER models, demonstrating a strong
correlation with the ground truth consumed endurance across all
conditions (overall average = 0.89, CI = [0.86, 0.92]; baseline = 0.76,
CI = [0.59, 0.87]; weighted object = 0.88, CI = [0.83, 0.91]). In contrast,
CE, NICE, and NICER showed no meaningful correlation between
their predictions and the ground truth consumed endurance. These
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Table 6: Pearson correlation coefficients (with 95% confidence intervals) between the ground truth consumed endurance at 60
seconds and the estimated consumed endurance at 60 seconds obtained from WICE, NICER, NICE, and CE across different
scenarios.

Correlation (95% CI) between ground truth CE at 60s and estimated CE at 60s

Models Overall Female Dataset Male Dataset Baseline Dataset Weighted Object Dataset

WICE 0.89 (0.86, 0.92) 0.90 (0.85, 0.93) 0.82 (0.74, 0.88) 0.76 (0.59, 0.87) 0.88 (0.83, 0.91)
NICER 0.18 (0.04, 0.32) -0.16 (-0.35, 0.05) -0.07 (-0.27, 0.13) 0.14 (-0.19, 0.43) 0.22 (0.07, 0.37)
NICE -0.24 (-0.37, -0.10) -0.15 (-0.34, 0.05) -0.04 (-0.24, 0.16) -0.07 (-0.38, 0.25) -0.26 (-0.40, -0.10)
CE -0.24 (-0.37, -0.10) -0.16 (-0.35, 0.04) -0.04 (-0.24, 0.17) -0.06 (-0.37, 0.26) -0.27 (-0.41, -0.11)

Table 7: Pearson correlation coefficients results (with 95% confidence intervals) between the Borg CR10 ratings at 60 seconds
and the estimated consumed endurance at 60 seconds obtained fromWICE, NICER, NICE, and CE across different scenarios.

Correlation (95% CI) between Borg CR10 at 60s and estimated CE at 60s

Models Overall Female Dataset Male Dataset Baseline Dataset Weighted Object Dataset

WICE 0.79 (0.73, 0.84) 0.77 (0.67, 0.84) 0.82 (0.74, 0.87) 0.65 (0.43, 0.80) 0.75 (0.68, 0.82)
NICER 0.14 (-0.00, 0.28) -0.19 (-0.37, 0.01) -0.09 (-0.29, 0.11) 0.09 (-0.23, 0.40) 0.21 (0.05, 0.35)
NICE -0.23 (-0.36, -0.09) -0.18 (-0.37, 0.02) -0.07 (-0.26, 0.14) -0.10 (-0.40, 0.22) -0.28 (-0.42, -0.12)
CE -0.23 (-0.36, -0.09) -0.18 (-0.37, 0.02) -0.06 (-0.26, 0.14) -0.10 (-0.40, 0.22) -0.29 (-0.43, -0.13)

results further underline the reliability of WICE as a metric for
accurately quantifying shoulder fatigue across different conditions.
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Figure 6: Comparison of consumed endurance (%) across dif-
ferent models by weight (kg), sex (Female and Male) and
location (Elbow and Wrist). Models that closely align with
the Ground Truth values provide more accurate endurance
predictions.

Figure 6 shows the posterior predictions of consumed endurance
(in percentage) at 60 seconds for each model, alongside the ground
truth endurance observed experimentally. Models with predictions
closely aligned to the ground truth demonstrate better performance.
As expected, the ground truth consumed endurance increases with
heavier weights, and this increase is more pronounced at the wrist
than at the elbow. This suggests that attaching weight at the wrist

imposes greater endurance demands and results in higher muscle fa-
tigue compared to the elbow. The observed trends are consistent for
both males and females, although males generally exhibit slightly
lower consumed endurance at similar weight levels, highlighting
potential sex-based differences in endurance capacity.

The CE and NICE model significantly overestimates consumed
endurance, while NICER significantly underestimates consumed en-
durance. Additionally, as weight increases, the predicted consumed
endurance at 60 seconds for CE, NICE, and NICER decreases, con-
tradicting the observed ground truth. This inconsistency occurs be-
cause added weight causes participants’ arms to lower more signifi-
cantly compared to the baseline (no-weight) condition, highlighting
the necessity of incorporating our proposed measure into the model.
We discuss this further in Section 5.4. In contrast, both WICE mod-
els show a much closer alignment with the ground truth consumed
endurance, accurately capturing the increase in endurance con-
sumption with heavier weights and highlighting the stronger effect
at the wrist compared to the elbow. Overall, WICE provides a more
reliable estimate, than CE, NICE, and NICER in loaded conditions.

In addition, we also assessed the subjective feelings of fatigue at
60 seconds to validate the model’s reliability. We chose Borg CR10
as the standard subjective measure of fatigue to cross-reference
people’s perceptions of fatigue. The Borg CR10 scale offers a ratio-
scale measure of physical exertion, with its values corresponding
to specific verbal descriptors [12]. The scale ranges from 0 to 10,
where 0 represents “Nothing At All” and 10 signifies “Very Very
Hard (Maximal)”. The detailed ranges are shown in Appendix B.
We chose Borg CR10 as previous research demonstrates that Borg
CR10 ratings can effectively quantify shoulder fatigue [51, 68].

We calculated the Pearson Correlation coefficients for all models
using the Borg CR10 ratings reported during the experiment. As
can be seen in Table 7, the WICE model strongly correlated with
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Figure 7: The comparison of the calculation of WICE and NICER.

the Borg CR10 (average = 0.79, CI = [0.73, 0.84]; baseline = 0.65, CI
= [0.43, 0.80]; weighted object = 0.75, CI = [0.68, 0.82]), indicating
that WICE’s estimates better match users’ perceptions of exertion.
However, CE, NICE, and NICER showed no meaningful correlation
between their estimates of consumed endurance and the ground
truth.

5.4 Contrasting Model Performance
In Sections 5.2 and 5.3, we demonstrated that WICE can accu-
rately estimate maximum endurance time and consumed endurance
compared to experimental results, outperforming both CE [34],
NICE [42], and NICER [43]. Figure 7 illustrates how different models
estimate shoulder fatigue under various conditions. NICER serves
as valuable base models, as it incorporates important factors such as
joint torques (e.g.,𝐶𝑜𝑀 and 𝜏shoulder ), posture angles (e.g., 𝛼𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟
and 𝛼𝑒𝑙𝑏𝑜𝑤 ), and sex (𝐺). This was proved through the leave-one-
out cross-validation as shown in Table 4, where NICER showed a
strong performance at baseline conditions. Our proposed WICE
model integrates and further improves upon these factors to achieve
more accurate fatigue estimation by employing a more precise mea-
sure of arm mass and incorporating a Bayesian framework.

One of the limitations of both CE and NICER is that they fail to
capture the variability in arm mass across users, as they rely on
an average arm mass (𝑀arm) estimated from previous research [27,
64]. Consequently, the calculation of CoM loses some individual-
specific information. In contrast, our approach uses each partici-
pant’s body mass to indirectly estimate individual arm mass, ef-
fectively capturing differences between users, hence accounting
for inter-participant variability. Our approach estimates the mass
of the arm segments based on the user’s body weight, that can be
easily collected from users (e.g., many exercise apps already record
this information).

Furthermore, CE and NICER do not explicitly account for the
effects of added weight and its position on the arm, especially
when the weight is not uniformly distributed along the limb. As
shown in Sections 5.2 and 5.3, instead of showing a reduction in
maximum endurance time with increasing weight, CE and NICER
predict either stable or even slightly increased endurance times.
Similarly, for consumed endurance at 60 seconds, these models
predict stable or slightly decreasing values as weight increases,
directly contradicting the experimental observations.

Figure 8 explains this discrepancy: in the CE and NICER models,
a lower arm position (i.e., a smaller 𝛼shoulder ) is associated with a
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Figure 8: The effect of weight on endurance time.
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Figure 9: Shoulder abduction angle (P33) over time for three
weight conditions (0 kg, 2 kg at the elbow, and 1 kg at the
wrist) smoothed using a Gaussian filter.

higher endurance time and, consequently, a lower consumed en-
durance at 60 seconds. During our user study, we observed that
when the weight is attached (𝑀object ) on participants’ arms, par-
ticipants tend to slightly lower their arms. This is because gravity
drives the weighted object downward, causing the arms to fall
slightly below the prescribed angle, while we allow for a margin
of error of ±5◦ degrees. This unintended arm lowering leads both
CE and NICER models to mistakenly predict an increase in max-
imum endurance time, contrary to actual fatigue experienced by
participants. For example, Figure 9 illustrates the effect of weight
placement on P33’s maintained shoulder abduction angle. As the
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weight increases, P33 struggles to maintain a steady arm angle,
causing the arm to drop more rapidly, similar to the effect observed
when the weight is positioned further from the shoulder. In practice,
heavier weights consistently result in shorter maximum endurance
times. Our WICE model addresses this issue by explicitly modelling
the torque of the weight (𝜏weight ), thereby directly incorporating
the effect of attached weight on maximum endurance time. This
modification captures the impact of the attached weight on fatigue
more accurately than relying solely on arm angle.

6 Discussion
Our results demonstrate that our approach effectively and accu-
rately estimates shoulder fatigue, successfully addressing scenarios
where weights are attached at various arm locations. We propose
that WICE can serve as a reliable, objective measure of fatigue, of-
fering valuable insights to guide future interaction design to design
mid-air interfaces based on daily life scenarios (e.g., holding a bag
while interacting in MR).

6.1 Applications of WICE
Our weight-based model offers exciting future applications in the
design and evaluation of interactive systems in MR. It not only
serves as an objective measure of fatigue but also offers guidance
for designing more ergonomic and efficient interactions.

6.1.1 Endurance differences in using controllers vs hands-only. We
employed the WICE model to estimate how much the weight of
a controller can affect users’ maximum endurance time. By com-
paring the duration a user can hold a controller in one hand across
various XR headsets, our analysis quantifies the influence of con-
troller attributes on user fatigue. We compiled a list of commonly
used XR headsets with available controller weight data, gathering
measurements online and verifying them with a digital scale. As
shown in Table 8, the model provides posterior means, errors, and
95% credible intervals for both female and male users across dif-
ferent products. We used Apple Vision Pro as the baseline since it
does not require controller input. The largest maximum endurance
time difference observed is 17 seconds for females and 16 seconds
for males, corresponding to a 7% decrease for females and a 6%
decrease for males compared to no controller interaction. These
metrics enable us to detect subtle performance variations resulting
from differences in controller weight, offering valuable insights
into how hardware modifications could enhance user comfort and
operational efficiency during extended VR sessions.

Many studies are dedicated to improving VR/AR/MR experi-
ences using haptic devices. However, an important consideration
is that early prototypes for improving XR experiences tend to
be clunky and significantly heavier than their eventual produc-
tions [2, 24, 38, 44, 65]. Table 9 compares several hand device
prototypes and commercially available devices about the effect
of weight on the maximum endurance time. For example, the com-
mercially available device Cybergrasp6 that can provide haptic
feedback is weighted 0.450 kg. This could hinder the user’s max-
imum endurance time by 38 seconds for females (average = 189,
error = 66, 95% CI = [93, 347]) and 37 seconds for males (average =

6https://www.cyberglovesystems.com/cybergrasp [Accessed: 2025-03-31]

Table 8: The maximum duration in seconds for which a user
can hold a single controller in one hand on commonly used
XR headsets. We provide the posterior means of parameter
estimates (Est.), posterior error (Err.), and the bounds of their
95% credible intervals (CI). W represents Weight in kg. The
difference (Diff.) compared to the baseline is shown in sec-
onds with a percentage relative to the baseline.

Product W Sex Est. (Err.) 95% CI Diff.

Apple Vision Pro 0 F 227 (80) [111, 419] -
M 281 (99) [136, 519] -

Meta Quest 3S 0.103 F 218 (76) [106, 400] -9 (4%)
M 272 (95) [132, 501] -9 (3%)

Meta Quest 3 0.126 F 215 (76) [105, 397] -12 (5%)
M 269 (95) [131, 497] -11 (4%)

Meta Quest Pro 0.164 F 212 (74) [103, 390] -15 (7%)
M 266 (94) [130, 491] -15 (5%)

HTC Vive Focus 30.142 F 214 (75) [104, 394] -13 (7%)
M 268 (94) [131, 494] -13 (5%)

PlayStation VR 0.162 F 212 (74) [103, 390] -15 (7%)
M 266 (94) [130, 491] -15 (5%)

Pico 4 0.184 F 210 (74) [103, 387] -17 (7%)
M 265 (93) [129, 487] -16 (6%)

Table 9: The maximum duration in seconds for which a user
can hold a device in one hand. We provide the posterior
means of parameter estimates (Est.), posterior error (Err.),
and the bounds of their 95% credible intervals (CI). W rep-
resents Weight in kg. The difference (Diff.) compared to the
baseline is shown in seconds with a percentage relative to
the baseline.

Product W Sex Est. (Err.) 95% CI Diff.

HapThimble [39] 0.100 F 218 (76) [106, 401] -9 (4%)
M 272 (95) [132, 501] -9 (3%)

HandMorph [48] 0.171 F 211 (74) [103, 389] -16 (7%)
M 265 (93) [129, 489] -16 (6%)

Dexmo [30] 0.300 F 200 (70) [98, 368] -27 (12%)
M 255 (89) [125, 470] -26 (9%)

Cybergrasp6 0.450 F 189 (66) [93, 347] -38 (17%)
M 244 (85) [119, 448] -37 (13%)

ELAXO [78] 0.540 F 183 (64) [90, 335] -44 (19%)
M 237 (83) [116, 437] -44 (16%)

Haptic Glove [11] 0.640 F 176 (61) [87, 323] -51 (22%)
M 230 (80) [113, 423] -51 (18%)

244, error = 85, 95% CI = [119, 448]), which is around 15% decreased
compared to no controller interaction. This way, researchers can
use WICE to discount the effects of the additional weight inherent
to the prototype and estimate endurance times based on the weight
of the eventual production-grade device. This approach ensures
that preliminary tests on clunky prototypes still yield insights that
remain relevant once the hardware is optimised for commercial
release.

https://www.cyberglovesystems.com/cybergrasp
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6.1.2 Sensing and adapting encumbrance. We argue that WICE pro-
vides a foundation for building sensing and adapting mechanisms
to detect and mitigate the effects of encumbrance [41]. In practical
applications, this means that systems can dynamically adjust inter-
action modalities (e.g., switching between gestures and speech) or
re-targeting 3D objects to reduce excessive arm movement [57, 74].
Such adaptive strategies are particularly valuable in contexts like
smartphones [58, 66], wearable devices [18, 76, 77], VR/AR/MR
systems [41], and mid-air gaming, where maintaining user comfort
is essential.

One promising direction for future development involves de-
signing a system that leverages built-in cameras to automatically
detect the object a user is holding and estimate its weight from the
captured image or video [5, 63]. Such a system would continuously
monitor the user’s context and adapt to the corresponding solu-
tions in real-time to maintain comfort without requiring additional
effort. Future systems can deliver safer and more engaging user
experiences by continuously sensing and adapting to the effects of
encumbrance.

6.2 Limitations and Future Work
To manage participant fatigue and study duration, we tested only a
90◦ arm angle and alternated between left and right arms. By em-
ploying a between-within (mixed) design, we were able to maximise
the range of conditions while ensuring a sufficient number of data
points per condition. Although our study alternated tasks between
the left and right arms to widen the data range and mitigate fatigue,
we did not model dominance effects explicitly, where dominant
hand generally displays superior motor control [6], dexterity [3],
and strength [21, 73]. Future work could benefit from a focused in-
vestigation into how different arm angles, various weight locations,
and handedness affect fatigue estimation.

Additionally, our model is based on the values of arm mass de-
rived from body weight. Deriving arm mass from the participant’s
body mass may not accurately reflect individual variations in limb
mass distribution. Nevertheless, we argue that this is currently the
best method for calculating arm mass. We simplified the compu-
tation of the object’s centre of mass by using the joint position,
which might not capture the precise locations. This could be im-
proved if the object is tracked individually without the need for
extra tracking resources.

Finally, our model currently assumes a linear relationship be-
tween perceived exertion and maximum joint force based on previ-
ous studies [34, 36, 42, 43]. However, observations from our user
study indicated that reported fatigue levels do not strictly follow
a linear pattern. Indeed, some psychophysiological relationships
between muscular intensity and perceived exertion are better de-
scribed by power functions [13]. Moving forward, we plan to ex-
plore and identify a more accurate mapping function that captures
this non-linearity to improved predictions of subjective fatigue.

7 Conclusion
This paper introduces a novel model, Weight-Induced Consumed
Endurance (WICE), designed to quantify shoulder fatigue during
mid-air interactions. It is the first approach to accurately char-
acterise shoulder fatigue when additional weight is attached to

different arm locations. By refining instantaneous shoulder torque
calculations through the inclusion of carried object data, WICE
effectively captures fatigue levels both with and without added
weight. The model also incorporates individual arm mass, enabling
a more personalised and accurate assessment of fatigue. Addition-
ally, by adopting a Bayesian framework, WICE provides a proba-
bilistic distribution of shoulder fatigue, offering richer insights com-
pared to single-point estimates. Overall, the model demonstrated
strong performance in multiple cross-validation tests, proving ro-
bust under various weight and location scenarios, and consistently
outperformed existing fatigue metrics by explicitly incorporating
weight-related factors. We demonstrated how WICE can be applied
to examine the effects of the controller on interaction, analyse en-
durance differences across different levels of weight and location,
provide the foundation for sensing and adapting encumbrance for
more tailored MR interactions, and monitoring shoulder fatigue
during interactive games.
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